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Abstract

How does the meaning of a word change over time? This thesis introduces a bottom-up procedure that
aggregates word usages into groups of meaningful usage types in order to detect and investigate lexical
semantic change within diachronic collections of texts. Computational measures of semantic change
have relied on distributional and predictive word representations as well as on models for word sense
induction. While the first fail to take word polysemy into account, the second involve an a priori se-
lection of the number of underlying word senses, use a limited context window and treat sentences as
bags of words. In order to address these limitations, we use a neural language model to obtain contextu-
alised word representations which are uniquely defined by a word form together with its entire sentential
context, and we aggregate said representations by automatically selecting the number of saliently differ-
ent usage types, in a data-driven fashion. We then propose three metrics of semantic shift to quantify
the degree of change undergone by a word and evaluate them against human judgements. Furthermore,
we analyse the linguistic properties that guide the formation of clusters of word usages and probe our
method with various types of semantic change. Results show that we are able to detect, in corpora of
varying temporal granularity, the narrowing, broadening, and metaphorisation of a word’s interpretation.
We can recognise cultural drifts driven by technological innovations, cultural transitions, and specific
events, as well as more subtle linguistic shifts such as changes in the subcategorisation frames of nouns
and verbs. Besides its empirical findings, this thesis demonstrates that language models and contextu-
alised word representations constitute a versatile and fruitful framework for computational analyses of
language change and variation.
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Chapter 1

Introduction

In the fourteenth century the word boy used to refer to a male assistant, servant, slave, or to a male
person born of humble parentage, whereas girl used to refer to a child or a young person of either sex
(Oxford English Dictionary). By the fifteenth century a new, narrower usage had emerged for the word
girl: in phrases such as prety gyrle it designated exclusively female individuals (OED). A century later,
boy had lost its negative connotation and was more broadly used to refer to any male child, becoming the
masculine counterpart of girl:

(1) Whose child is that you beare so tenderly? Is it a boy or girle, I praie ye tell? (OED)
(1594, R. Wilson Coblers Phrophesie 1.10180)

This example from Bybee (2015) shows that words generalise or specialise their meaning over the course
of long time periods. Their meaning shifts due to internal linguistic processes as well as cultural factors
like new technologies: the word virtual used to denote the property of almost being a particular thing
or almost having a certain quality; nowadays it is also used in the sense of something which does not
physically exists but appears to do so thanks to a computer simulation. Changes in meaning can also
occur at a faster pace, e.g. to fulfil the communicative needs of specific speech communities. In 2017,
a few months after the adoption of a fluorescent yellow football kit, Liverpool FC fans began to use the
word highlighter to ironically refer to the new kit (Del Tredici et al., 2019).

Why is a word used in a new way? Why does an entity or concept cease to be designated by a word?
Understanding language change helps us explain similarities and differences among languages of the
world as well as variation within single languages. Perhaps more importantly, as language is inherently
dynamic and continuously changing, understanding the processes that lead to change can provide us with
more general insights into how language is used to interactively create meaning and to perform socially
recognised actions.

With this goal in mind, we propose to model diachronic lexical change using not abstract representa-
tions of word forms or word senses but rather representations of unique contextualised word usages. For
the operationalisation of this paradigm shift, we use a large pre-trained language model to obtain contex-
tualised word representations (Devlin et al., 2019) and then cluster these representations into meaningful
and interpretable agglomerates of word usages. By comparing temporally adjacent agglomerates and
quantifying their differences, we are able to detect the narrowing, broadening, and metaphorisation of
a word’s interpretation. As for the nature of the detected change, our method can recognise cultural
drifts, i.e. polysemisation processes driven by cultural and technological innovation as well as by spe-
cific events, and it identifies linguistic shifts such as changes in the subcategorisation frames of nouns
and verbs.

Furthermore, our tracking procedure is applicable to language corpora that cover varying time scales
and it is entirely data-driven: it does not require researchers to e.g. determine the number of underlying
senses that a word is expected to have but rather it is able to induce interpretable types of word usages
directly from the corpus. This produces results that are fine-grained with respect to the data set at hand.
Indeed, by deploying our method on both historical and conversational corpora of English, we show that
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it is particularly apt for the analysis of socially pervasive long-term shifts yet it can be fine-tuned to also
recognise short-term community-specific changes in word meaning.

Finally, although it requires no linguistic annotation and little-to-no training, our approach is very
versatile. Most experiments are performed in a zero-shot setting, thus they only require information
about the time period where texts were written, and they suggest that the proposed techniques are not
limited to the study of monolingual historical change, but can be used to investigate variation within a
language as well as cross-linguistic patterns of variation and change.

1.1 Language as an ever-changing social instrument

For entirely unambiguous and felicitous communication, individuals would require a symbol for each
action they need to perform. One symbolic unit, i.e. one word, would be used at the dining table to ask
someone if they can pass the salt, another symbol would be used to denote salt as a mineral, and yet
another, distinct symbol would be used to refer to a salt shaker. It is clearly unfeasible for speakers, how-
ever, to memorise symbol-function pairs that serve every possible need for reference, conceptualisation
and interaction. Therefore, in order to codify a large variety of complex intentions, speakers rearrange a
low amount of simple constituents, combining atomic symbols into larger symbolic units. This recursive
construction of symbolic expressions allows for the productivity of language and is most often guided by
the principle of compositionality: the meaning of a complex expression is determined by the meaning of
its simple constituents and by the rules used to assemble them. Inevitably, this process is subject to hu-
man cognitive constraints: speakers must learn to use and recognise patterns of symbols, and to associate
them with communicative functions.

There is another, perhaps more stringent constraint which stems from the fundamental human dimen-
sion of sociality. Not only must speakers ensure they remember all the mappings from forms to functions
as isolated individuals, they also need to be able to use these mappings in the real world to perform actions
and interactions (Searle, 1975, 1985). To this end interpretations of symbols, and of sequential combi-
nations thereof, must be shared. Indeed speakers learn how to use language together, by interacting
with each other and with their environment, and interpretations undergo processes of conventionalisation
within groups of speakers in order to become shared (Milroy, 1992; Traugott and Trousdale, 2013). The
participants and the social environment of a symbolic interaction are active forces in the processes of
conventionalisation, and constitute what can be generically termed as context. As Searle and Austin,
among others, have brought to light, all language use is contextual—situated according to precise social
as well as spatio-temporal coordinates (Searle, 1975; Austin, 1975; Brugman, 1988). Context shapes
linguistic interaction as it provides speakers and listeners with cues for the interpretation of symbols, and
it allows interaction as although no two interactants share the exact same symbolic repertoire they can
use words as situated “instructions to create meanings” (Traugott, 2017).

The social coordinates of context, however, are necessarily subject to variation. Most individuals
experience this variation on a daily basis, e.g. when they move from their family environment to their
work environment. As the range of social contexts is wide and ever-changing, a speech community
must somehow determine a limited collection of symbols that can ideally satisfy communicative needs
in any foreseeable context. Word polysemy is a necessary consequence of this selective process: it allows
speakers to use the same word in different contexts to perform different actions. In other words, polysemy
is not a static phenomenon: it is the result of a dynamic balancing activity between the maximisation
of informativeness (ensuring that one’s instructions to create meaning are correctly followed) and the
minimisation of effort (limiting the cognitive overload that comes with remembering word forms and
their possible functions) (Zipf, 1949; Ramscar and Baayen, 2013; Baayen et al., 2017). Hence, the
senses of a word, i.e. the concepts associated with it (Traugott, 2017), can be acquired, lost, and they
can shift over time. This dynamicity is observable e.g. in the variance of the type-sense ratio across
languages, registers, and epochs.

The second source of instability for the symbolic mappings of which language consists is the vari-
ability of spatio-temporal coordinates. Different speech communities can use the same form to refer to
different concepts and refer to the same concept with different forms. If they do so in the same time
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period, we typically refer to this phenomenon as variation. Similarly, speech communities may use the
same form with different goals in different epochs (and so do speakers across their lifespan (Baayen
et al., 2017)). Permanent modifications of this kind constitute change. Far from being a disadvantage,
this malleability makes language flexible enough to resist to the constant evolution of communicative
needs. The alternative—an unfeasible one—would require designing a language once and in such a way
that it is apt for conceptualisation and interaction concerning events and entities that are not yet known
to the speech community.

1.2 Analysing language change

Both variation and change can in truth occur at all linguistic levels: speakers can vary the way words
are pronounced, the way words can be formed from smaller units (and what even counts as a word),
the way words are arranged together into phrases and periods, and the types of structures that can be
built from periods themselves. Research on variation and change has indeed involved many linguistic
variables, drawn from phonology, syntax, semantics, and discourse. For the analysis, in particular, of the
diachronic dynamics of lexical semantics, recent approaches have largely focused on shift detection, the
task of deciding whether and to what extent the concept evoked by a word has changed between adjacent
time periods (e.g. Gulordava and Baroni, 2011; Kim et al., 2014; Kulkarni et al., 2015; Hamilton et al.,
2016; Bamler and Mandt, 2017; Rosenfeld and Erk, 2018). This line of work relies on distributional and
predictive word representation models, therefore word types have been mostly used as unit of represen-
tation and unit of analysis. Such type-based models depend on a strong simplification—that one abstract
representation is sufficient to model polysemous words. E.g. the same word representation of highlighter
would be used in both of the following contexts1:

(2) a. Apply the highlighter under the eyes, above the brows and on the browbone.
b. This highlighter does not bleed through paper and it does not smear ink across the page.

This is why other researchers have directed their attention to word senses and their induction over time
periods, typically detecting novel senses based on the diachronic divergence between sense distributions.
Various Bayesian models have been developed for this task (Lau et al., 2012; Cook et al., 2014); the latest
advances include the SCAN model (Frermann and Lapata, 2016) and dynamic embeddings (Rudolph
and Blei, 2018). A non-Bayesian approach has been put forward by Mitra et al. (2014, 2015), who use
dependency label features to define sense clusters.

It has been argued, however, that senses themselves are a discretisation of something that is continuous
in nature and partially undetermined, and that words are modulated by speakers within each and every
conversation to convey a contingently intended interpretation (Brugman, 1988; Paradis, 2011; Ludlow,
2014). As an example, the occurrence of highlighter in (3-a) can be interpreted neither as a cosmetic
preparation nor as a text marker, whereas highlighter in (3-b) may refer to any of the two2:

(3) a. They still have the Stoke shirts in S and M and the Celtic highlighter abomination in XL.
b. Choose a highlighter that lets you be as precise as you like to be.

Understanding that the phrase highlighter abomination refers to a football kit requires specific world
knowledge, i.e. knowing at least that Stoke and Celtic are football teams. On the other hand, the meaning
of highlighter in (3-b) is simply not fully determined given the available sentential context. To do away
with a static notion of word senses, each usage of a word shall be considered as a unique modulation of
that word’s meaning, which can only be determined in context. Yet is there a natural language processing
paradigm that allows for lexical meaning to be a priori underdetermined (Ludlow, 2014) and interpreted
on the fly?

1Both sentences were found on the web as a result of querying for highlighter and highlighter pen. (2-a) is taken from
www.totalbeauty.com/content/gallery/best-highlighter, while (2-b) is constructed with sentences from
www.jetpens.com/blog/the-best-highlighter-pens/pt/606.

2Example sentence (3-a) is taken from r/LiverpoolFC (Section 3.1.2), while sentence (3-b) was found on a web page hosting
reviews of text markers: www.jetpens.com/blog/the-best-highlighter-pens/pt/606.

3

www.totalbeauty.com/content/gallery/best-highlighter
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Neural language models offer a way to produce token representations that are shaped dynamically by
their sentential environment: for a given word type, each corresponding token representation is a learned
function of the model’s hidden layers, as activated by a sentence containing that word. In other terms, a
language model assigns a different abstract representation to each of the four occurrences of highlighter
seen above. Furthermore, the fact that language modelling involves sequential predictions rather than un-
structured predictions (as e.g. Skip-gram (Mikolov et al., 2013a)) causes the internal states of the neural
network to capture, in addition to semantic relatedness and functional similarity, also syntactic, composi-
tional semantic, as well as information-structural properties of word distributions. Indeed, (pre-trained)
neural language models have recently been shown to improve state-of-the-art performance in numerous
natural language processing applications (Dai and Le, 2015; Peters et al., 2017, 2018; Radford et al.,
2018; Howard and Ruder, 2018), including both sentence-level tasks such as natural language inference
and paraphrasing, and token-level tasks such as named entity recognition and word sense disambiguation.

1.3 Thesis structure

The remainder of this thesis is structured as follows. The second chapter will provide the reader with an
overview of linguistic theories of lexical semantic change as well as an excursus on different approaches
to word representation learning. This will serve as a motivation for our methods, which we present
in Chapter 4. Before, in the third chapter, we will present the raw language data, both historical and
conversational, that our analyses are based on. In Chapter 5 we will describe how the proposed approach
is evaluated as well as the results of our assessment. Then, the sixth chapter will showcase the types
of analyses made possible by our approach, and it will discuss their successes and limitations. Finally,
Chapter 7 concludes with a summary of our contributions and with considerations on the future potential
of our method as well as on its usefulness to linguistic investigations and extrinsic applications.
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Chapter 2

Background

The meaning of words and its diachronic change have been largely studied by historical linguists, lex-
icographers, lexical typologists, and more in general by scholars in the humanities and social sciences.
The approach that these scholars have in common can be referred to as “close reading” (Moretti, 2013): it
involves human reading1 and manual analysis of texts. However standard and popular, this approach does
rely on a crucial assumption: that a few important, paradigmatic texts, the canon, can be representative
for the entirety of language production. This assumption was necessary until a few decades ago: indeed
if the agent of linguistic analysis is human, there is no alternative to close reading. With the evolution of
computer science, however, and the surge of the field of computational linguistics, new semi-automatic
and automatic methods were introduced which could scale up this line of research, thereby moving from
close to “distant reading” of texts. Distance is a “condition of knowledge” (Moretti, 2013) in the sense
that it blurs away the peculiarities of a particular text and it allows the analyst to focus on units that are
smaller or larger than the text. These methods have largely benefited from the digitisation of historical
documents and from the alacrity of online language production. Both have been providing and are con-
tinuously contributing to a rapidly growing body of texts for distant reading. These corpora can span
years, decades, centuries, and they provide support for quantitative analyses and testing of linguistic hy-
potheses, thereby allowing investigations into how the meaning of words changes over shorter or longer
time spans as well as across speech communities. The combination of these two advances has given rise
to an increasing number of studies on lexical semantic change which deal with its detection, characteri-
sation, modelling, and generalisation (e.g., in the form of laws of semantic change (Dubossarsky et al.,
2015; Xu and Kemp, 2015; Hamilton et al., 2016)) and which rely on formal, automatic, quantitative,
and reproducible evaluation (Tahmasebi et al., 2018).

2.1 Lexical semantic change

Lexical semantic change can be studied from two main perspectives (Grondelaers et al., 2007). One
is onomasiological, from function to form: onomasiological studies lay their focus on a referent, an
object or an idea, and analyse the synchronically and diachronically varying ways of designating that
referent. The other view is semasiological, from form to function: semasiological studies focus on a
linguistic expression and investigate the synchronic and diachronic variation of the objects and ideas
that are designated by that expression. Most of the latest computational approaches to semantic change
modelling adopt a semasiological point of view. This is because most methods rely on abstract numerical
representations of words or phrases that are obtained in a data-driven fashion, and it is not yet clear how
to extract concept representations from data in the same bottom-up manner. Concepts are not spelled out
in raw language data.

From the semasiological perspective, semantic change occurs when an existing form acquires or loses
a particular meaning. In this sense, meaning change is strictly related to the evolution of the senses of a
word form: its polysemy can increase or decrease as more or less referents are designated by the same
form over time (Traugott, 2017). As an example, the word virus has made its first appearance in Late

1Intended as the common act of reading that literate humans perform on a daily basis.
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Middle English texts with the meaning of snake venom. Subsequently it acquired the medical sense of a
disease-related infective body substance. Only in the last century has it been used in its nowadays perhaps
most prototypical sense of submicroscopic infective agent, and its most lately acquired meaning is that
of a self-replicating malicious computer program. This type of change is also referred to as semantic
shift.

Onomasiological studies often take a top-down approach and use resources such as ontologies (e.g.
WordNet (Miller, 1995)) to fixate the concepts for which changing referential expressions will be tracked.
Yet work on the emergence of concepts and semantic categories is at its very beginnings (Dubossarsky
et al., 2015; Schmelzeisen and Staab, 2019). An exquisitely controversial example that can be studied
onomasiologically is the ongoing change of terminology used to denote indigenous peoples of the Amer-
icas: Indian, American Indian, then the introduction of Native American, later only Indigenous, and
sometimes Amerind or Amerindian. This type of change is often referred to as lexical replacement.

From both angles of view, in the first half of the 20th century linguists have devoted much of their
theoretical work to categorising different types of semantic change (Bréal, 1899; Stern, 1931; Bloomfield,
1933). The resulting categorisations have inspired a number of more recent studies (Blank and Koch,
1999; Geeraerts et al., 1997; Traugott and Dasher, 2001) and are described in modern textbooks on
language change (e.g. Hock and Joseph, 2009; Campbell, 2013).

The main types of change—of which e.g. Traugott (2017) offers historical examples—are:

• broadening (or generalisation): the extension of the range of concepts designated by a term,

• narrowing (or specialisation): the contraction of the range of concepts designated by a term,

• metaphorisation: the conceptualisation of one referent in terms of another, guided by analogical
reasoning and implying an unspoken simile,

• metonymisation: a meaning transfer from one word to another, guided by spatial, temporal or causal
contiguity between the two referents,

• amelioration: the acquisition of or shift towards a positive connotation,

• pejoration: the acquisition of or shift towards a negative connotation.

As it is a result of the conventionalisation of interactional strategies within groups of speakers, semantic
change is almost never abrupt; it rather involves a process of polysemisation. In other words, a shift from
a word sense A to a new sense B never occurs directly—[A]→ [B]—but rather through an intermediate
polysemous stage, such as [A] → [A,B] → [B], or [A] → [A, b] → [a,B] → [B], where capitalisation
is used to denote the dominant word sense (Kutuzov et al., 2018).

2.2 Word representations

A variety of methods has been proposed for the computational modelling of lexical semantics. To con-
struct abstract representations of words, they rely on fundamental assumptions about language.

2.2.1 Distributional word representations

Distributional semantics approaches assume that the distributional hypothesis holds, i.e. that semantic
similarity between words results in similarity of linguistic distributions (Harris, 1954). The idea is that if
semantically related words occur in similar contexts (first-order co-occurrence), those contexts and their
relative frequency can be used to induce semantic representations (Boleda, 2019). Co-occurrences can
be modelled with count-based methods (Turney and Pantel, 2010; Baroni and Lenci, 2010) as well as
with predictive neural models (Turian et al., 2010; Collobert and Weston, 2008; Collobert et al., 2011;
Mikolov et al., 2013a; Pennington et al., 2014) which have nowadays largely gained ground thanks to
their good performance (Baroni et al., 2014; Levy and Goldberg, 2014) and to three important prop-
erties of the representations they output (Boleda, 2019): (i) they are learnt unsupervisedly from raw
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natural language data, (ii) their multi-dimensionality captures multiple nuanced—though not necessar-
ily interpretable (Boleda and Erk, 2015)—aspects of meaning, and (iii) their continuous nature reflects
gradedness in semantic phenomena such as word similarity, synonymy, lexical priming, and selectional
preferences.

In distributional semantics models, the unit of representation is the orthographic form: i.e. to one
word form corresponds one distributional representation. However powerful, this type-based approach
requires explicit composition rules (Mitchell and Lapata, 2010; Baroni and Zamparelli, 2010; Socher
et al., 2012; Mikolov et al., 2013b) in order to express meaning in context, thus it is intrinsically inapt for
the modelling of polysemous words and of polysemysation processes. It is not feasible to accurately ag-
gregate all senses of a word into a single representation when the distributional properties of two distinct
senses do not overlap (cfr. Section 1.2). Another crucial downside of distributional word representa-
tions is that they discard sequential information tout court and only rely on collocations; they encode
similarity of linguistic environments by modelling texts as unordered collections of words. Moreover,
although directly deployable as word features in downstream tasks, distributional representations can
only be interpreted in second-order terms, i.e. via examination of their nearest neighbouring words in a
multi-dimensional semantic space.

2.2.2 Contextualised word representations

Distributional word representation learning hence produces static, context-independent word features.
In contrast, high quality word representations should ideally also model how a word’s collocational
properties vary across different contexts. The first well known attempt to address this limitation is a
clustering-based disambiguation algorithm for word usage vectors (Schütze, 1998). In this method, the
occurrences of a given word are grouped together based on second-order co-occurrence, i.e. instead of
constructing a context-sensitive representation for a word based on the words that directly occur with
it, context-sensitivity is achieved using the terms that these words in turn co-occur with in the training
corpus (Schütze, 1998). A few years after this pioneering work, more researchers have begun to focus
on word sense induction and word sense representations (McCarthy et al., 2004; Reisinger and Mooney,
2010; Neelakantan et al., 2014) within the field of distributional semantics. Others have proposed to learn
multiple vectors for the same word type by relying on the word’s selectional preferences for its argument
positions (Erk and Padó, 2008) and to directly learn usage-specific representations based on the set of
exemplary contexts wherein the target word occurs (Erk and Padó, 2010). The latest, deep learning
oriented approaches to learning context-dependent word features embed the representation learning task
into neural machine translation (CoVe; McCann et al., 2017) or into language modelling (Dai and Le,
2015, ULMFiT; Howard and Ruder, 2018, ELMo; Peters et al., 2018, GPT; Radford et al., 2018, 2019,
BERT; Devlin et al., 2019). This paradigm shift has the potential of modelling not just collocational but
also collostructural characteristics of word use (Stefanowitsch and Gries, 2003; Gries and Stefanowitsch,
2004; Goldberg et al., 2004): lexemes are analysed in interaction with the grammatical structures wherein
they are embedded.

As an example, Peters et al. (2018) propose a technique to obtain deep contextualised word Embed-
dings from Language Models (ELMo), which can be easily integrated into a variety of task-specific NLP
architectures. ELMo is a stack of bidirectional LSTMs first trained as a language model and then aug-
mented with task-specific layers. This type of modular architecture allows sequential information to be
processed by the model left-to-right and right-to-left, and it encourages the model to hierarchically dis-
tribute across layers the detection and processing of different lexical and sentential features. Indeed the
transferability of ELMo layers has been investigated in recent work (Liu et al., 2019) and higher ELMo
layers have been shown to be mostly tailored to higher level linguistic properties (such as those regu-
lated by long-distance dependencies) and to context-dependent aspects of word meaning (Peters et al.,
2018), whereas lower layers appear to encode simple word and sentence features (low-layer hidden states
represent some aspects of syntax and they can be successfully used e.g. for POS tagging).

As it is a language model, ELMo’s goal is to predict the next most likely word given a sequence of
tokens. Although word representation learning is not treated as an explicit learning objective, ELMo’s
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layered structure provides a handle on the LSTM activations that correspond to a specific input word, so
that the representation of each input token is a function of the entire sentence that contains it. Unlike
previous approaches (Peters et al., 2017; McCann et al., 2017), the learned representations are deep—in
the sense that they are a learnable2 linear combination of all the internal layers of the language model—
and they are contextualised, as it has been verified in zero-shot word sense disambiguation settings, where
raw ELMo word features yield results that are on par with state-of-the-art WSD models (Raganato et al.,
2017; Peters et al., 2018).

On the other hand, following the trend that developed about a decade ago in computer vision, NLP
researchers have also begun to rely on large neural architectures trained using abundant language data
and without any human supervision. Once trained, these neural networks can be deployed with little or
no fine-tuning to token-level tasks (e.g. named entity recognition), sentence-level tasks (e.g. sentiment
analysis) as well as tasks that require inter-sentential reasoning (e.g. paraphrase detection and natural
language inference). This pretraining approach was followed by researchers at the University of Ulm
(Howard and Ruder, 2018), OpenAI (Radford et al., 2018, 2019), and Google (Devlin et al., 2019), who
proposed similar attention-based language modelling architectures. A crucial characteristic of attention-
based models (Vaswani et al., 2017), which differentiates them from recurrent neural models and makes
them suitable for parallelised computation, is the fact that they do not process sentences sequentially.
Instead, stacked attention layers build dynamic representations for a target word in terms of the relation
of that word to all other input tokens (and sometimes to the target token itself). In this way, the model’s
access to long-distance cues is not mediated by the processing of intervening sentential material, as
it is in the case of recurrent models. Another point of contrast with recurrent contextualising models
is that attention-based architectures tend to lack a single most transferable layer. The best performing
layer varies across tasks—it is usually towards the middle—and a linear combination of layers typically
outperforms any individual layer (Liu et al., 2019).

In the current work, we describe and deploy Google’s BERT (Bidirectional Encoder Representations
from Transformers) as it was shown to achieve the best performance on various tasks as well as on
pure language modelling (Devlin et al., 2019; Liu et al., 2019). The main novelty of BERT is a masked
learning objective that allows the representation to “fuse” left and right context (Devlin et al., 2019):
the new masked language model, inspired by Taylor’s Cloze test (Taylor, 1953), masks multiple input
tokens in a sentence and its objective is to predict the correct words for the masked slots, based only
on sentential context. Besides this token-level task, BERT is also trained on a binary next sentence
prediction task, which forces the model to capture relationships between sentences.3 This is particularly
useful for sentence-pair tasks such as paraphrasing and natural language inference.

The intuition behind BERT’s double training regime is that filling randomly positioned slots and recog-
nising connected sentences requires awareness of the meaning carried by lexical items, the meaning car-
ried by grammatical and rhetorical structures, socio-cultural meaning, as well as simple situation models
(Fries, 1963; Kintsch, 1988). As a consequence, BERT can also be used effectively as a word represen-
tation learner in order to obtain rich and truly contextualised features.

2.3 Semantic change modelling

2.3.1 Type-based approaches
The three key properties outlined in Section 2.2.1 make distributional semantics a viable framework for
the automatic analysis of semantic change: multi-dimensionality of word representations allows for the
modelling of nuanced semantic shift, their gradedness reflects well the continuous nature of change, and
the representation learning process does not require any data annotation (Boleda, 2019). The standard
distributional approach to semantic change modelling is to separately train distributional models on the
time bins that constitute a corpus (Gulordava and Baroni, 2011) and to measure distance between repre-
sentations obtained for the same word with diachronically trained models. Representational coherence
between features obtained for adjacent periods can be guaranteed by incremental training procedures

2The linear parameters are optimised with respect to an extrinsic task.
3The final pre-trained model achieves ca. 98% accuracy on this task.
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(Kim et al., 2014) as well as by post hoc alignment of semantic spaces (Hamilton et al., 2016). Alter-
natively, some methods learn relations from word usages to time periods directly (Bamler and Mandt,
2017; Rosenfeld and Erk, 2018; Rudolph and Blei, 2018). What all these approaches have in common
is the shared assumption that meaning change results in change of linguistic distribution, measured as
first-order co-occurrence.

Proceeding chronologically, one of the first approaches to the automatic quantification of change based
on diachronic corpora is the one proposed by Michel et al. (2011). It is based on the idea that signif-
icant growth in the relative frequency of a word can be an indicator of semantic shift. In the case of
generalisation and narrowing, for example, the acquisition or loss of a word sense usually correspond
to an increase or decrease in the raw frequency of the word in the corpus. Frequency change is, how-
ever, a very loose approximation of semantic change and it yields a large amount of false positives, i.e.
words whose frequency in the corpus has changed but whose meaning has remained constant. Gulordava
and Baroni (2011) move from frequency-based measures of change to a distributional model of lexical
semantics. They build a co-occurrence matrix using a fixed context size and fill its values using Local
Mutual Information (Evert, 2008). Semantic shift is characterised as variation in distributional similarity,
expressed as the cosine distance between feature vectors obtained for a word in two adjacent time peri-
ods. The vocabulary (hence the vector dimensionality) is fixed across time periods, so that the resulting
word representations lie in the same vector space. Low self-similarity across decades indicates semantic
change.

To extend this methodology to more than two periods, Kim et al. (2014) introduce an incremental
training procedure for diachronic word representations. Given a corpus of texts divided by period of
production, a Skip-gram model receives as input the texts from period t and outputs epoch-specific word
embeddings. The obtained vectors are used to initialise the Skip-gram embedding matrix at t + 1. To
identify the specific periods during which change has occurred, this method relies on the geometric self-
similarity of the representations obtained for a word over time: cos

(
vtw, v

t+1
w

)
. An important limitation

of this technique is that it is biased with respect to a word’s frequency of occurrence: if usages of a word
decrease dramatically starting from t = x (as in reductive semantic change or sense loss), word vectors
for t > x will remain virtually the same and semantic change will remain undetected. The authors
suggest combining cosine distance and frequency to define a new more robust metric.

If, as observed by Kim et al. (2014), a word’s different frequencies of occurrence across time periods
can cause distributional models to fail at detecting semantic changes (e.g. complete loss of a word sense),
surges in frequency are problematic too: they do not always indicate actual change and can occur e.g. as
a result of real-world events. Therefore, to complement insights from distributional similarity and word
frequency analyses, Kulkarni et al. (2015) also investigate whether a word’s part-of-speech changes over
time. Correspondingly, they construct three different types of time series and propose a statistically
sound change point detection algorithm.

• Frequency-based time series are built using the log probability of occurrence of a word for each
epoch-specific snapshot of the corpus. This method is sensitive to bias in domain and genre distri-
butions, and to sudden or unpredictable popularity shifts of specific entities and events.

• Syntactic time-series are constructed measuring the Jensen-Shannon divergence between POS dis-
tributions across successive snapshots. The intuition is that when a word acquires a new sense,
its syntactic environment in the corpus will vary (e.g. to download vs. a download) to reflect the
acquisition of new syntactic functionalities.

• Distributional time series are constructed by computing the cosine distance between vectors of the
same word obtained in different epochs. Skip-gram is used to learn word representations: (i) for
each time period the model is initialised with random embeddings, then (ii) the model is trained
independently for each time period, and finally (iii) the vector spaces are aligned to the final snapshot
by learning a linear transformation mapping every word from an embedding space to the successive
one.
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Given any of these time series, a Mean Shift model (Taylor, 2000) is used to determine if a word has
changed significantly and, if so, what the exact change point is. Kulkarni et al. (2015) argue that even if
change in word meaning happens gradually, a time period can be identified where the new usage takes
over (a tipping point).

Unlike the incremental training approach of Kim et al. (2014) but similarly to that of Kulkarni et al.
(2015), Hamilton et al. (2016) propose a method to force alignment of diachronic embeddings to the
same coordinate axes. They use orthogonal Procrustes to learn an optimal rotational alignment between
the word embedding matrix Wt and the matrix Wt+1 obtained in consecutive time period. As a measure
of semantic shift, they propose second-order similarity between word representations. This is obtained
by computing pairwise similarity over time with respect to a selection of prototypical lexemes: for a word
w, an ordered vector of cosine similarities sim(w, ∗, t) is computed for each time period and compared
to sim(w, ∗, t′) using Spearman rank-correlation coefficient.

2.3.2 Sense-based approaches

There exist extensions of distributional representations that use senses as their unit of meaning (Chen
et al., 2014; Neelakantan et al., 2014; Wu and Giles, 2015; Liu et al., 2015). Nonetheless multi-sense
embeddings do not consistently improve over type-based ones (Li and Jurafsky, 2015) and they have not
been used to track the evolution of senses over time.

Alternative unsupervised approaches have been proposed that do not directly rely on multi-sense em-
beddings but which still allow for the modelling of polysemous words. A prominent example of this
line of work is the noun sense identification pipeline proposed by Mitra et al. (2014, 2015). They use
Google Books (Michel et al., 2011) to produce epoch-specific distributional thesauri (Rychlỳ and Kil-
garriff, 2007): the dependency-parsed contexts of each word and the frequencies of the syntactically
annotated contexts are used to calculate the lexicographers mutual information (Kilgarriff et al., 2004)
between a word and its contextual syntactic features. Using a co-occurrence-based graph clustering
framework (Biemann, 2006), the top 1000 contextual features of each time period are grouped together,
so that each cluster hypothetically corresponds to a word sense. If a word undergoes sense change, this
can be detected by comparing sense clusters obtained from two different time periods. Such comparisons
can reveal the birth of a new sense, the death of an existing one, as well as the split of a single sense
into multiple senses and the formation of a new sense due to the combination of two older senses. The
stability of a sense—whether it is uninterruptedly detected across time spans—, its age—the number of
time periods wherein it has occurred—and the location of a change—the time period where the change
is first detected—can also be measured. An important property of this approach is that it starts taking
collostructural word features into account. However, in order to do so, it requires the texts to be syntac-
tically parsed. Moreover, several threshold values and heuristics need to be introduced in order for sense
change to be reliably detected; most notably the set of candidate words for semantic change detection is
filtered down to include only nouns.

With the potential of being methodologically and statistically more principled, a number of Bayesian
models of meaning change have been also developed (Wijaya and Yeniterzi, 2011; Lau et al., 2012,
2014; Cook et al., 2014). The latest and so far most successful one is SCAN, a Bayesian model of
sense change (Frermann and Lapata, 2016). Conceptually similar to (Lau et al., 2012) and inspired by
dynamic topic models (Blei and Lafferty, 2006), SCAN models the meaning of a word as a set of senses
which change their relative prevalence over time, and it assumes that temporally adjacent representations
are co-dependent in order to guarantee smoothness of semantic change. Each target word is modelled
separately, using a collection of fixed-size context windows annotated with their period of origin.4 For
each time period approximate inference results in a distinct word representation, which is defined as (i)
a multinomial distribution over K word senses, (ii) a |V |-dimensional distribution over the vocabulary
for each word sense k ∈ [1, . . . ,K], and (iii) a precision parameter which regulates the variability of
temporally adjacent representations (Frermann and Lapata, 2016). The temporal representations induced
by SCAN can be successfully deployed for the detection of meaning change between two time periods

4The length of the time intervals (temporal granularity) can be set as a hyperparameter.
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as well as for the identification of a text’s epoch of origin.
Although it can model polysemy as the co-existence of multiple latent word senses and polysemisa-

tion as gradual change in the relative prevalence of senses, SCAN presents two important limitations.
First, it relies on the manual setting of the number of word senses K, which is the same for all words in
(Frermann and Lapata, 2016) and remains constant across time as a result of temporal co-dependence.
Second, it treats context as a bag of words—whose size must be therefore also chosen as a hyperparam-
eter. Selecting K in this manner is equivalent to assuming (i) that every word possesses multiple senses,
(ii) that every word form corresponds to the same amount of senses, and (iii) that the number of senses
can be preemptively guessed by the modeller. Even if the second assumption were to be dropped (which
is indeed possible with SCAN), an anticipated decision with regard to the number of senses that com-
pose a word’s meaning is still required. The latter aspect can be particularly problematic for corpora with
community specific language use. As an example, the word highlighter is used in an online community
of Liverpool FC fans to refer to a particular fluorescent-yellow football jersey (cfr. Section 1.2); its pro-
totypical, community-agnostic interpretation of broad pen used for marking documents is absent—not to
mention the nowadays perhaps even predominant cosmesis-related sense. The second drawback, which
is shared with traditional type-based models, is that SCAN solely relies on the distributional hypothesis.
That is, it assumes that the meaning of a word can be exhaustively modelled via the word’s relatedness
to co-occurring lexemes as well as its similarity to lexemes that exhibit similar corpus distributions. The
sentential context of a word of interest is simply expressed as an unordered collection of tokens occur-
ring within a limited, fixed distance from the word. As we have discussed in Sections 2.2.1 and 2.2.2,
dispensing with the inherently sequential structure of sentences results in the inability to capture compo-
sitionality, long distance syntactic and semantic relations, as well as more global properties such as topic
and information structure.

2.3.3 Towards a usage-based approach
To discard these assumptions, we adopt a theory of lexical semantics that deems word meaning as in-
herently underdetermined and contingently modulated in situated language use. Every usage of a word
must undergo an interpretation—at least by the speaker, hopefully by the reader—that is necessarily
shaped by the word’s context of occurrence. In other terms, if one representation for each word form
is obviously not sufficient for the accurate modelling of lexical semantic features, defining a fixed num-
ber of underlying senses is only a refinement of the first method and it still amounts to considering
polysemy as a discrete and static phenomenon (Section 1.2). To address this limitation, we rely on a
neural language model and obtain contextualised representations that are uniquely defined by a word
form together with its entire sentential context. In the proposed approach there is no need to define in
advance a number of senses—salient types of word usages emerge from the data. Furthermore, usage
types are represented directly via the usages that define them. Second order descriptions are unnecessary
as each word interpretation is defined in terms of the sentence wherein the word occurs. Similarly, each
emerging usage cluster can be represented abstractly by the respective cluster centre as well as by the
sentence that generated the closest contextualised word vector to that centroid. This approach results in a
much more human-friendly, interpretable characterisation of word meaning. Another advantage of using
language models to obtain word representations is that they encode more than shallow topic relatedness
and explicit distributional similarity. By factoring in sequentiality, these models encode long distance
dependencies as well as global properties of sentences.
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Chapter 3

Natural language data

Historical data sets are of prime relevance for the analysis of language change. Available diachronic
corpora can be broadly categorised into those that span long periods of time (e.g. multiple decades,
centuries) and those that cover shorter periods (e.g. months, a few years). The longitudinal extension
of a corpus contributes to determine the types of semantic change that can be detected and analysed.
Linguistically motivated semantic shifts tend to be found, for example, in long-term resources, whereas
short-term corpora are useful for analysing socio-cultural semantic drifts (Kutuzov et al., 2018).

The most prominent long-term resource is probably the Google Books Ngrams corpus (Michel et al.,
2011). It covers 5 centuries, from 1520 to 2008, and it has been used in numerous studies to detect
differences in word meaning and connotation across arbitrarily wide time spans (e.g. Gulordava and
Baroni, 2011; Mitra et al., 2014). A disadvantage of this corpus is that Google Books texts are dis-
tributed in n-grams and the rarest n-grams have been discarded. This can be problematic for methods,
such as ours, that require the processing of entire sentences rather than of a restricted context window
surrounding the word of interest. Another well established resource is the Corpus of Historical American
English (Davies, 2012), which spans two centuries, includes full texts from four different genres, and is
genre-balanced decade by decade.

Examples of corpora that span shorter time periods include the Corpus of Contemporary American
English (Davies, 2010), containing genre-balanced texts from 1990 to 2017, and the New York Times
Corpus (Sandhaus, 2008), with news articles from 1990 to 2016. As the temporal extension of the corpora
decreases, the granularity of the time spans typically increases, allowing to explore faster-paced meaning
negotiation dynamics (Clark, 1996; Hasan, 2009). An increasing number of Computer-Mediated Com-
munication data sets has indeed made its appearance in the field. E.g. Kulkarni et al. (2015) use Amazon
Movie reviews with a granularity of 1 year as well as Twitter data with a granularity of 1 month, and
Del Tredici et al. (2019) deploy a dataset of conversations occurred over a period of 8 years on an online
forum.

3.1 Diachronic data sets

3.1.1 Historical corpora

The Brigham Young University has made available two unique resources for the study of historical and
contemporary American English. Their diachronic nature and large size make these corpora particularly
apt for the investigation of changes at all linguistic levels: lexical, morphological, syntactic, semantic,
and discursive. We will present COHA and COCA in the following sections.

COHA
The Corpus of Historical American English (COHA; Davies, 2012) is one of the largest resources for the
study of variation and change in American English. It consists of approximately 400 million words and it
covers two centuries of language use: from 1810 to 2009. Texts are canonically divided into decades but
they are annotated on a year by year basis. After the 1880s, approximately 2 million words are available
for each year.
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The corpus is not only structured longitudinally. Texts of four different genres were collected: fiction,
popular magazines (magazines), newspapers, and non-fiction. They were assembled from a variety of
sources, including archives such as Project Gutenberg1 as well as scanned and PDF documents2, movie
and play scripts. The compilers balanced the corpus decade by decade, so that the relative frequency of
the four genres is approximately constant across time bins.3 The absolute genre distribution, on the other
hand, is not uniform as fiction accounts for ca. 50% of the texts available in each decade.

COCA
The Corpus of Contemporary American English (COCA; Davies, 2010) is an even larger resource for
the study of contemporary language use, its variation and change. Texts are organised on a yearly basis
and they were collected from 1990 to 2017, for a total of 560 million words. The span of this corpus
is shorter compared to COHA’s while the granularity is the same, yet the amount of data available for
each time bin is at least 10 times larger: for each year approximately 20 million words are available.
COCA’s more than 160,000 texts are uniformly balanced by genre—though not on a year by year basis—
and three genres overlap with those found in COHA: (i) fiction, consisting of short stories, children’s
magazines, first chapters of books, movie and play scripts, (ii) magazines, including a selection of almost
100 magazines from a variety of domains—from Good Housekeeping to Fortune, and (iii) newspapers,
including different sections of 10 US newspapers. Non-fiction is replaced by (iv) academic journals and
(v) transcribed conversations are included as an additional genre (spoken).

3.1.2 Conversational corpora

r/LiverpoolFC
The r/LiverpoolFC corpus (Del Tredici et al., 2019) was created as a resource for short-term meaning
shift analysis. It covers 8 years of language use in an online community of speakers hosted by the
Reddit forum platform from 2011 to 2017. The subreddit4 under consideration is r/LiverpoolFC, one
that gathers fans of the English football team. This dataset was compiled with the idea of providing re-
searchers (i) with texts organised according to sufficiently high temporal granularity, so that abrupt shifts
can be detected, and (ii) with the language use of a specific community, where non-standard word inter-
pretations are more easily adopted. In addition, the social graph that connects r/LiverpoolFC redditors
exhibits high density, a characteristic that makes it a better environment for the fostering of linguistic
innovations (Del Tredici and Fernández, 2018). The size of the corpus is not negligible—it consists of
40 million words—and each utterance is annotated with a timestamp, enabling analyses at a custom level
of granularity. One disadvantage is that texts are non-uniformly distributed across time, as a result of the
increasing popularity of the r/Liverpool subreddit. This imbalance can make it hard to study changes that
occur in the first months covered by the data set, which only contain a few user posts.

Reddit 2013
As well as a community-specific collection of online discussions we use a large community-independent
sample of users posts. This additional corpus can help models specialise on language use in conversations
regardless of the topic of discussion. The Reddit 2013 data set consists of timestamped posts crawled
from multiple subreddits, monthly, in 2013.5

3.2 Evaluation data sets

We have so far described the diachronic corpora used as training data for our semantic change analysis.
These data sets provide, for every text, the exact date and time or at least the interval indicating when the
text was produced. What they lack is an annotation that specifies which words have actually undergone

1www.gutenberg.org
2Scanned with Optical Character Recognition from printed sources, these documents also went through a post-processing

phase. This clean up process was not sufficient, however, to prevent some texts from being quite unnatural to read.
3With the exception of the first 5 decades, which do not include newspapers.
4A subreddit is an online forum hosted on www.reddit.com where users discuss a particular topic.
5The data was downloaded from http://files.pushshift.io/reddit/comments/.
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semantic shift during the intervals covered. Rather than relying on synthetically generated sets (as in e.g.
Cook and Stevenson, 2010; Kulkarni et al., 2015; Rosenfeld and Erk, 2018) we use human-annotated
lists of semantically shifted words, ranked by the degree of their shift.

For our analysis of lexical semantic change in COHA, we use as a reference the human judgements
collected by Gulordava and Baroni (2011). From a set of 10,000 randomly selected mid-frequency words,
they chose 100 words from different frequency ranges. This shorter list was then ranked by human raters
according to their intuitions about semantic change from the 1960s to the 2000s, using a 4-point scale
(0: no change; 1: almost no change; 2: somewhat change; 3: changed significantly). Annotations were
averaged to produce a continuous shift score. The inter-annotator agreement, measured as the average
pair-wise Pearson correlation, was 0.51.

On the other hand, an important benefit of the r/LiverpoolFC corpus (Section 3.1.2) is that it comes
with a list of words annotated by Reddit users of the r/LiverpoolFC community itself.6 The evaluation
dataset consists of 100 word forms; 34 of these were identified as shift candidates by the authors7 while
the rest are confounders: 33 word forms that underwent a frequency increase from 2011-2013 to 2017,
and 33 with constant frequency. A total of 26 Reddit users were shown the 100 words and, for each word,
they provided a binary annotation indicating whether change had occurred. This annotation process
yielded an average of 8.8 judgements per word, which were then aggregated into a semantic shift index by
averaging. Shift index values range from 0 to 1 and a value higher than 0.5 indicates that the majority of
raters who expressed their vote consider semantic shift to have occurred for the word under consideration.
The inter-annotator agreement, measured as Krippendorff’s alpha, was 0.58.

6Corpus and annotated data set are available at github.com/marcodel13/Short-term-meaning-shift.
7“Semantic shift is defined here as a change in the ontological type that a word denotes, which takes place when the word

starts to be used to denote an entity which is different from the one originally denoted and the new use spreads among the
members of a community” (Del Tredici et al., 2019).
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Chapter 4

Methods

In Chapter 2 we have presented lexical semantic change as a linguistic phenomenon and we have dis-
cussed three types of approaches to the analysis of lexical semantic change: one is type-based and it
does not take word polysemy into account, the second focuses on word senses but it assumes that the
number of underlying word senses can be established a priori, and ours, the third, is based on unique
contextualised word usages. A usage-based approach allows us to model the meaning of words as under-
determined, and to determine the unspecified aspects of word meaning on the fly, drawing information
from the contingent sentential context of a word. In Chapter 3 we have presented the data sets on which
our experiments rely, and thus we have clarified that the only type of supervision required by our proce-
dure is the temporal annotation of the corpus of texts.

In this chapter, we finally present our method. We begin in Section 4.1 with a description of the
deployed representation learning algorithm, the BERT language model (Devlin et al., 2019). In par-
ticular, we give an overview of the data generation process and of the model architecture, which are
not explicitly discussed in (Devlin et al., 2019), and we describe two fine-tuning procedures: domain-
adaptation and diachronic tuning. Domain-adaptive fine-tuning has the goal of adjusting the language
model latitudinally, i.e. to the peculiarities of language use of a speech community or writing genre. On
the other hand, diachronic fine-tuning is a training regime for longitudinal adaptation which produces
period-specific language models.

Regardless of the tuning level (frozen, domain-adapted, or diachronically fine-tuned) BERT is then
used as a language model to obtain contextualised word representations (or usage representations) for
a list of words of interest. As a next step, all the usage representations collected for a given word
form are aggregated into interpretable groups (usage types) via two clustering algorithms, K-Means and
Gaussian mixture models. In Section 4.2, we provide a task-specific characterisation of both algorithms
and present multiple ways of determining, in a data-driven fashion, the number of partitions they should
yield.

The resulting clusters of usages, however, do not offer a diachronic view of word meaning. To include
the temporal variable into our analysis, we propose a way of organising clustered word usages along the
time axis, as described in Section 4.3. Lastly, although the resulting series of usage distributions are
particularly apt for qualitative analysis via expressive visualisations, we propose metrics to quantify the
distance between temporally contiguous usage distributions as an empirical measure of lexical semantic
change (Section 4.4).

4.1 Language model

BERT is a multi-layer bidirectional Transformer encoder (Devlin et al., 2019) trained with two language
modelling objectives: masked token prediction and next sentence prediction. The acronym BERT is
often used to denote, in particular, a version of the language model that was trained on the BooksCorpus
(800M words) (Zhu et al., 2015) and on English text passages extracted from Wikipedia (2,500M words).
We refer to this pre-trained version as frozen BERT.

In the following sections we describe how to generate training data for BERT, its neural architecture,
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as well as two tailored training regimes.

4.1.1 Data generation and processing
The BERT language model processes sentences in pairs, separated by a special [SEP] token. The first
token of each sequence is the [CLS] symbol, whose hidden activation is used as a sentence represen-
tation for classification tasks—similarly to the last activation of a recurrent language model. Each input
token is represented by the sum of three learned embeddings.

• Word type embeddings1: these are WordPiece embeddings (Wu et al., 2016) with a vocabulary of
size |V | = 30, 000. Words are segmented into character n-grams using a Wordpiece model which,
given a training corpus and a desired vocabulary size |V |, selects |V | types so that the size2 of
the tokenised corpus is minimal. A special symbol ## is used at the beginning of non-initial word
segments.

• Positional embeddings with a maximum supported sequence length of 512; i.e. V = {0, 1, ..., 512}

• Segment embeddings, with a vocabulary V = {A,B}, to designate whether an input token belongs
to the first or to the second sentence of the training pair.

To train the model on the newly introduced masked language modelling objective (Section 2.2.2,
Devlin et al., 2019) 15% of each sentence is masked according to the following procedure:

• 80% of the time, the [MASK] token is actually used

• 10% of the time, a random word replaces the masked token

• 10% of the time, the observed word is maintained.

BERT’s second task, next sentence prediction (Section 2.2.2), is trivially generated from the training
corpus: for each sample, when choosing the pair of sentences A and B, 50% of the time B is the sentence
that actually follows A, and 50% of the time it is a random sentence from the corpus (Devlin et al., 2019).

The entire pre-processing procedure to generate training examples involves multiple steps. We follow
the methodology used in the original BERT paper and repository3, and treat our corpora as lists of
documents: for conversational data sets, a document consists of a thread (a titled discussion within a
subreddit), whereas the historical corpora are already conveniently distributed in single documents. Pre-
processing is described in detail in Appendix A.

4.1.2 Model architecture
Each layer of BERT consists of a full Transformer block (Vaswani et al., 2017) which computes,
given an input sequence of token representations (x1, . . . ,xn), a continuous representation of the in-
put (z1, . . . , zn). A Transformer block is composed of two sub-layers:

(i) a multi-headed self-attention (or intra-attention) mechanism,

(ii) a fully connected feedforward layer consisting of two linear transformations and a non-linearity:
ReLU(xW1 + b1)W2 + b2.

Residual connections (He et al., 2016) and layer normalisation (Lei Ba et al., 2016) are applied to both
(i) and (ii) such that the final output of each sub-layer is given by LayerNorm(x + sub-layer(x)).

The attention mechanism consists of query, key, and value matrices Q,K,V, which are combined as
follows to obtain an output matrix:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

1Note that this is referred to as token embedding in (Devlin et al., 2019). However, we find that naming misleading as there
is only one such embedding for a given word form.

2The number of tokens.
3github.com/google-research/bert
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where dk is the dimensionality of the key vectors and 1
dk

is a scaling factor that differentiates the
attention mechanism implemented in the Transformer, named Scaled Dot-Product attention, from
standard Dot-Product attention. For multi-head self-attention, before the attention function is ap-
plied, the matrices Q,K,V are linearly projected h times, using 3h learned affine transformations
{WQ

i }h1 , {WK
i }h1 , {WV

i }h1 . Then the projections are concatenated and their concatenation is again pro-
jected to a single output matrix:

MultiHeadAttention (Q,K,V) = [H1; . . . ;Hh]W
O

where Hi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
For classification tasks, a classification layer is added on top of the Transformer’s final hidden layer and

it is then connected to a softmax layer over the classes of interest. All the parameters of the Transformer
blocks as well as, when available, the classification weights are fine-tuned jointly. Two versions of BERT
were released: a smaller one, BERTBASE, with 12 layers, 768 hidden dimensions, and a total of 110M
parameters, as well as a larger one, BERTLARGE, featuring 24 layers, 1024 hidden dimensions, and 340M
parameters.

Devlin et al. (2019) give some suggestions with regard to the optimal strategy for the aggregation
of neural activations across layers, based on results in a named entity recognition task. In our experi-
ments we collect the activations of all of BERTBASE’s layers and sum them dimension-wise. We do so
for computational efficiency and because, in our preliminary analysis, neither selecting a subset of the
layers nor using concatenation instead of addition produced notable differences in the relative geometric
distance between word representations. Discrepancies solely emerge when only the lowest BERT lay-
ers are considered—in any case, such a selection would be difficult to motivate in light of the current
understanding of stacked layer processing (e.g. Liu et al., 2019).

In the remainder of this thesis, we will use the acronym BERT to refer to BERTBASE, and our BERT
representations will be the 768-dimensional vectors obtained by summing BERTBASE’s 12 layers.

4.1.3 Fine-tuning
BERT is a pre-trained language model. Its very large size together with the large amount and variety
of training data are supposed to guarantee good performance on different tasks and different domains
without excessive fine-tuning. In many applications, in fact, the frozen BERT performs on par with
state-of-the-art models that have been specifically trained for the task at hand. Due to BERT’s recency,
however, it has not yet been studied in depth how to perform task-specific training optimally, neither is
it clear when such a training is necessary.

Computer Vision pre-trained models, which have undoubtedly inspired the birth of pre-trained lan-
guage models, have been object of a large number of studies which have tried to answer such questions.
Should the model be fine-tuned for a specific task? Should it be adapted to new target domains? And if
so, how should additional training be performed? E.g. should all the model weights be updated during
fine-tuning or only the ones belonging to the last layers? Or should they perhaps all be updated but to
a different degree (gradual unfreezing)? The answers have been perhaps not theoretically satisfying yet
they have enabled researchers and professionals to use CV models in practice and with success.

In NLP, in the lack of theoretical indications and of sufficient empirical evidence, whether and how to
give neural models some additional training has been treated as an engineering problem. In classification-
based tasks, for example, an additional fully connected layer is added on top of BERT’s Transformer
modules and specifically trained, together with the Transformer blocks, for the task of interest. Some-
times, however, e.g. when the target domain significantly differs from the training domain or when it is a
very specific one, BERT is first trained on the new domain using a language modelling (LM) objective.
The motivation is very intuitive: while task-specific training of classification layers helps the model learn
how to exploit the rich features learned during its massive pre-training, LM fine-tuning adapts the model
to community-specific language use.

Following previous approaches to the training of word representation models for diachronic change
modelling (e.g. Del Tredici et al., 2019; Han and Eisenstein, 2019) we propose two fine-tuning regimes:
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one performs domain adaptation and the other is responsible for diachronic fine-tuning. Domain-
adaptive fine-tuning is based on BERT’s two standard training objectives: masked language modelling
and next sentence prediction. We fine-tune BERT for n epochs on these two tasks and obtain as a result
a single BERT model with updated weights. Diachronic fine-tuning has the same learning objective as
domain adaption but it requires a corpus that is divisible into time bins, with custom granularity. For
every time bin an epoch-specific language model is obtained. Each of these model is initialised with the
weights of the model that chronologically precedes it. The first model can be initialised either simply as
the pre-trained BERT or with domain-adapted weights. The latter procedure is similar to the incremental
training proposed by Kim et al. (2014).

4.2 Clustering contextualised representations

Given that BERT can be deployed as a language model to obtain abstract usage representations, we need
an algorithm that finds clusters in a set of d-dimensional contextualised word representations. First, we
approach this task using a non-probabilistic technique, the K-Means algorithm (Lloyd, 1982). Then we
exploit Gaussian mixture models, whose discrete latent variables define assignments of data points to
specific components of the mixture—our usage types.

The data set is the usage matrix Uw = (x1, . . . ,xN ), which consists of N observations of a random
d-dimensional variable x, i.e. the N contextualised representations obtained for the N occurrences of a
word w in the diachronic corpus under scrutiny.4 Our objective is to partition the data into K clusters
(Figure 4.1a). Following the intuition provided by Bishop (2006), we can think of a cluster as a group
of usage representations whose distances from each other are smaller compared with the distances to
usages outside the cluster. To formalise this notion, let µ1, . . . ,µK represent the centres of the clusters
(or cluster centroids): µk is a d-dimensional vector and can be thought of as the prototypical word use
associated with cluster Ck. The procedure to select the value of K is described in Section 4.2.3.

4.2.1 K-Means

The goal of the K-Means algorithm is to find (i) the assignment of data points to clusters and (ii) the
set of cluster centres which minimise the sum of the squared distances of each data point to its closest
centroid µk, often referred to as distortion or inertia:

J =

N∑
n=1

K∑
k=1

rnk ||xn − µk||2

where rnk is a binary assignment indicator variable such that rnk = 1 if xn ∈ Ck and rnk = 0 if
xn /∈ Ck. To minimise this objective function, the K-Means algorithm follows the iterative procedure of
the Expectation-Maximization algorithm (EM) until there is no further change in cluster assignments or
until a maximum number of iterations is reached. Convergence is assured by definition—though it may
result in a local minimum of J (MacQueen et al., 1967)—and it requires a different number of iterations
depending on the initial position of the cluster centres.5

To alleviate the influence of different initialisation values, we run Expectation Maximization I = 10
times with I sets of initial centroid positions. The latter are chosen to be distant from each other according
to the k-means++ method (Arthur and Vassilvitskii, 2007), leading to an improvement over random
initialisation. The final clustering is the one that yields the minimum distortion value across all runs.
Finally, in our experiments, we standardise the data such that each of the variables has zero mean and
unit standard deviation (Bishop, 2006) and we use Elkan’s variation of the E-step to further accelerate
EM (Elkan, 2003).

4In our case, the random variable x may be considered as a type representation of word w.
5For a stopping criterion, we rely on the default values of the following implementation: scikit-learn.org/

stable/modules/generated/sklearn.cluster.KMeans.html.
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4.2.2 Gaussian mixture model

During each E-step of K-Means optimisation, every contextualised representation is assigned to a single
cluster, the one with the nearest prototypical usage (hard assignment). This may be problematic for
certain uses of a word that cannot be fully said to belong to one usage type or another (cfr. Section 1.2).
In such cases, it might be better to adopt a probabilistic approach as a way of expressing uncertainty
about the appropriate assignment. Indeed, with soft assignments, a single usage can be deemed to belong
to multiple clusters, though with different cluster membership strength.

Given the data set of contextualised word representations (x1, . . . ,xN ), we use a Gaussian mixture
model to obtain a latent variable for each observation, which will serve as a soft indicator of cluster
membership. Let us therefore introduce a one-hot K-dimensional binary random variable z such that
zk ∈ {0, 1} and

∑K
k=1 zk = 1, and whose marginal distribution is specified in terms of the mixing

coefficients πk ≡ p(zk = 1), ∀k ∈ [1,K]. We may think of the mixing coefficient πk as the prior
probability for a word use to belong to usage cluster Ck (i.e. how predominant is, in general, usage
type k?). This marginal is used together with a Gaussian conditional distribution of x to define the joint
distribution p(x, z) = p(z)p(x|z). The marginal distribution of x is a Gaussian mixture:

p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

πk N (x|µk,Σk)

To measure cluster membership strength, we rely on the conditional probability p(z|x). If πk can be
viewed as the prior for cluster k, then γ (zk) ≡ p (zk = 1|x) shall be considered as the posterior proba-
bility of belonging to usage type k after having observed the occurrence of the target word in context:

γ (zk) =
p (zk = 1) p (x|zk = 1)∑K
j=1 p (zj = 1) p (x|zj = 1)

=
πk N (x|µk,Σk)∑K
j=1 πj N

(
x|µj ,Σj

)
The EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2007) is used to estimate the mix-

ing coefficients πk and the parameters of the Gaussian distributions µk,Σk. EM does so by maximising
the logarithm of the data likelihood:

ln p(Uw|π,µ,Σ) =

N∑
n=1

ln

{
K∑
k=1

πk N (xn|µk,Σk)

}

Each iteration of EM is guaranteed to increase the log likelihood and the algorithm is executed until
there is approximately no change in the log likelihood, in the mixture parameters, or until a maximum
number of iterations is reached.6 The number of iterations required to reach (approximate) convergence is
typically higher than for the K-Means algorithm, and each iteration is more computationally expensive.
We therefore follow the common practice to initialise the Gaussian mixture model with a run of the
K-means algorithm.7

4.2.3 Selecting the number of clusters

We have so far given the number of clusters for granted. In this section, we will discuss how to select
the value of K for K-Means as well as for the Gaussian mixture model. A notable difference between
these two clustering methods is that the minimum number of clusters that we can obtain with K-Means
and its K selection methods is 2, whereas a Gaussian mixture can also only rely on a single component.

6For a stopping criterion, we rely on the default values of the following implementation: https://scikit-learn.
org/stable/modules/generated/sklearn.mixture.GaussianMixture.html.

7The means µk and covariance matrices Σk of the Gaussian distributions can be initialised, respectively, to the cluster
centres and to the sample covariances of the clusters found by the K-Means algorithm. The mixing coefficients πk can be set
to equal the fractions of data points assigned to the respective clusters (Bishop, 2006).
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Usage A

At the day’s end, the users’ association concept had been backed only by the western big three which sponsored the idea,
Australia, New Zealand, Italy.

Behind the users’ association, which is at best only a provisional device, lies the possibility of a boycott of the canal.
He pushed ahead with the American plan to establish an association of users.

Usage B
However, the Macintosh platform is still not as universally supported as are PCs, and this puts users at a disadvantage.
Google provided search services for users of both Yahoo and AOL, putting its brand name in form of millions of computer users.
But in that case the entire machine was immersed in inert nonconductive liquid—not exactly a practical setup for home users.

Usage C

It’s worth noting that the antibiotics users were, on average, older and heavier, had stronger family histories of cancer and were
more likely to use hormone-replacement therapy.

Amphetamine users often become heavily dependent on the drug, which can produce the symptoms of schizophrenia.
Pot prohibition gives sporadic users the stigma of criminal records and makes young people cynical about law in general.

Usage D

Great financial harm would soon follow for all users of steel...
Mr. Ford has announced that he will ask all industrial users of his coal to install furnaces that will remove only the gas, leaving a

fuel unimpaired for domestic purposes.
Kodak vows to listen closely to its customers, and now sends manufacturing employees on road trips to meet with professional

users of film such as Hollywood producers to find out their needs.

Usage E

No, the headaches are going to come when veteran users install one of these beauties and then try to lead their computer lives
as if nothing had changed.

Since e-mail users change addresses and internet providers often, they say, the registry can’t be kept current.
Though downloading Atlas was rough going (more than an hour on a 14.4 modem), patient users were treated to a program

stuffed with new applications, part of Netscapes plan to outdazzle and outperform Microsoft.

Usage F

The system to suppress competition by 1) boycotts, 2) price cuts (against plants refusing to play ball), 3) identical bids to cement
users, and 4) opposition to the building of new plants.

Sensuality, in turn, has an almost murderous force. Always there are the users and the used. Slave caravans seem to march across
the top of every page like an endless frieze.

Most interesting and important consequences of the fact that railroads are private ways while motor highways are open to the
public is the contrast between the methods by which the users in each case bear the annual cost of the way.

Table 4.1: Usages of the word users in their context of occurrence (COHA). Each usage is among the five nearest
observations to the respective cluster centre. Usage type clusters are obtained with K-Means clustering and the
frozen BERT.

K-Means: silhouette and variance ratio
Although it may seem straightforward to use distortion as a criterion (Section 4.2.1), distortion is not a
normalised metric, hence it will always yield the highest allowed K. We therefore rely on two metrics
that are commonly employed to evaluate the quality of hard assignments: the silhouette score, and the
variance ratio criterion. We choose these metrics as they do not rely on a known set of labels, which of
course we lack for the current task.

The silhouette coefficient of an observation x is a measure of the quality of its assignment to cluster
Ck. It is defined in terms of a(x), the average distance between x and all other points in Ck, and b(x),
the average distance between x and all the data points in x’s next nearest cluster:

s(x) =
b(x)− a(x)

max{a(x), b(x)}

The silhouette coefficient is a value between 1 and -1 and it quantifies how close an observation is to
data within the correct cluster and how far it is from data in the closest neighbouring cluster. The overall
silhouette score of a clustering is the average silhouette coefficient over all clustered samples. It favours
intra-cluster coherence and inter-cluster dissimilarity.

On the other hand, the variance ratio criterion (or Calinski-Harabasz score) for k clusters and N
observations is defined in terms of the within-cluster dispersion matrix W (k) and the between-cluster
dispersion matrix B(k):

VRC(k) =
Tr(Bk)

Tr(Wk)

N − k
k − 1

Bk =
k∑

i=1

|Ci| (µi − µ(Uw)) (µi − µ(Uw))
T

Wk =

k∑
i=1

∑
x∈Ci

(x− µi) (x− µi)
T

Gaussian mixture model: AIC and BIC
To choose the optimal number of mixture components, we can use criteria for model selection such as the
Akaike Information Criterion and the Bayesian Information Criterion. Both methods are meaningless in
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isolation: given a set of candidate models, they find which model provides the best approximation of the
data. This involves determining which model guarantees the minimal loss of information with respect to
the true data distribution.

Given a set of P model parameters θ and the model likelihood L(θ̂) under the maximum likelihood
estimate of θ, the Akaike Information Criterion (AIC; Akaike, 1998) is given by:

AIC = −2 logL(θ̂) + 2P

The subtrahend−2 logL(θ̂) provides a measure of the model’s goodness of fit, whereas the minuend 2P
is a penalty for model complexity.

The Bayesian Information Criterion (BIC; Schwarz et al., 1978) is a slight modification of AIC which
imposes a stronger penalty for the number of estimated parameters:

BIC = −2 logL(θ̂) + P logN

The lower the AIC or BIC value, the better the trade-off between model fitness and model complexity.
However, as it features a stricter regularisation term, BIC always selects models that are smaller or equal
in size compared to AIC. It follows that, in general, AIC is better in situations when a false negative
finding is considered more misleading than a false positive—e.g. when a single cluster contains word
usages of two different types. The opposite holds for BIC: it is more adequate when false positives are
deemed more problematic than false negatives—e.g. when two separately detected usage types should
rather be merged.
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Figure 4.1: T-SNE visualisation of the contextualised representations collected in COHA for the word users with
the frozen BERT, coloured according to the usage type assigned to them by aK-Means clustering (a); the resulting
diachronic usage cluster frequency (b) and probability distributions (c).

4.3 Usage type distributions

In the previous two sections we have described the language model used to obtain contextualised word
representations and the clustering algorithms used to partition representations into an automatically de-
termined number of usage types (Figure 4.1a). We now present a way of organising word usages along
the temporal axis which is data-driven, generalisable to any collection of words, and which nevertheless
yields lexeme-specific characterisations (Figures 4.1b, 4.1c). Each word of interest is modelled sepa-
rately, hence it can possess a different number of usage types which are induced directly from language
use and characterised by real sentences (Table 4.1).

We begin by collecting all the usages of a word of interest w that can be found in the corpus under
scrutiny. For each usage of the target word in a sentence s =

(
v0, . . . , w, . . . , v|s|

)
, we store the corre-

sponding contextualised representation BERT(w|s) ∈ Rd output by the language model. The resulting
set of N word usages is then represented as a usage matrix Uw ∈ RN×d. Usage matrices can also be
specific to the usages that occur in a certain time period t ∈ [1, T ]; in that case, they are denoted as Ut

w,
such that [U1

w;U
2
w, . . . ,U

T
w] ≡ Uw.

A straightforward approach to determining which types of usages occurred in an interval is to indepen-
dently cluster the contextualised representations obtained in that interval. This approach results in T sets
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of partitions, one for each time-specific usage matrix Ut
w. We refer to these partitions as Ct

1, . . . C
t
Kt

w
,

with centroids µt
1, . . . ,µ

t
Kt

w
(where Kt

w is the number of partitions obtained by clustering Ut
w according

to a K selection metric, as discussed in 4.2.3). Then, links between partitions obtained for two adjacent
periods can be established by using a distance metric d (e.g. Euclidean or cosine) and an inter-cluster
distance measure such as the centroid distance, the single link distance, the complete link distance, the
average link distance, or Ward’s distance (as defined in Appendix B). Measuring distances between a
usage matrix Ut

w and its adjacent counterpart Ut+1
w yields a distance matrix Dw ∈ RKt

w×K
t+1
w , wherein

each element corresponds to a pair of temporally contiguous partitions.
This approach has two important drawbacks. First, using inter-cluster distance measures requires an

arbitrary criterion for establishing the identity of two temporally adjacent clusters (i.e. below which
distance can Ct

i and Ct+1
j be considered as the same cluster of word usages?). Furthermore, given a

distance matrix Dw, it is unclear in which direction links between partitions ought to be drawn. In-
deed, each partition in t can be linked to the closest one in t + 1 (i.e. argminaxis=1 Dw) or vice versa
(argminaxis=0 Dw). In the first (forward) case, as every partition in t will have a successor in t + 1,
the disappearance of a usage cluster cannot be detected; specularly, in the second (backward) case, the
emergence of new clusters of word use will remain unidentified as every partition in t+1 will have a pre-
decessor in t. Selecting the union or the intersection of forward and backward links is equally arbitrary
and problematic, yielding contradictory or insufficient inter-cluster connections respectively.

Given the high degree of arbitrariness involved in the above procedure, we turn to a slightly different
approach. Instead of independently clustering the time-specific usage matrices U1

w, . . . ,U
T
w, we perform

a single clustering of the contextualised word representations Uw obtained from all intervals. This re-
sults in a total of Kw partitions, which describe the different uses of w in the entire diachronic corpus, as
well as in a vector of usage labels yw ∈ [1,Kw]

N (which determines the colouring in Figure 4.1a). The
clustering results can then be organised according to the interval of origin of each contextualised repre-
sentation, thereby producing time-specific vectors of usage labels yt

w ∈ [1,Kw]
Nt

(which determine the
colouring of each bar in Figure 4.1b), where N t is the number of usages of w in the corpus snapshot of
time period t. Normalising by the number of usages we obtain, for each yt

w, a probability distribution
ut
w over usage types, illustrated in Figure 4.1c and defined as:

ut
w[k] =

|{yt
w[i] ∈ yt

w : yt
w[i] = k}|

N t
(4.1)

This solution comes with multiple advantages. A first, practical benefit is that we circumvent the need
for a post hoc definition of identity relations between partitions obtained for different time intervals. A
second practical advantage is that the clustering algorithm can better exploit the latent structure of the
semantic space spanned by the contextualised representations as (i) it is allowed to build on similarities
between usages that belong to different epochs and (ii) it can simply rely on a much larger amount of data
points. Yet another, more theoretical advantage has to do with the gradual nature of semantic change:
whereas independent clustering runs can result in globally inconsistent partitions, a single clustering of
all word uses serves as a form of smoothing and produces more gradual transitions between temporally
contiguous periods of word use, which can be crucial when the available data is sparse.

4.4 Quantifying change

The obtained usage type distributions allow qualitative inquiries into the evolution of word meaning.
We now propose three main metrics to quantitatively characterise word polysemy and polysemisation:
polysemy is expressed as the coexistence of multiple word usage clusters in a single time period whereas
polysemisation is described as a change in the relative prominence of usage clusters.

To quantify the degree of polysemy of a word w for which we have obtained the time-specific clusters
C1, . . . , CKt

w
, we use the Boltzmann-Gibbs-Shannon entropy of the corresponding usage distribu-
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tion ut
w:

H(ut
w) = −

Kt
w∑

k=1

ut
w[k] lnut

w[k] ≡ −
Kt

w∑
k=1

p (Ck) ln p (Ck)

The entropy H(ut
w) of a time-specific usage type distribution measures context-independent uncertainty

in the interpretation of a word form in interval t. As described in the previous section, however, the
clustering step of our procedure produces multiple usage distributions. To quantify how uncertainty
over possible interpretations varies across time intervals, we simply compute the difference in entropy
between two consecutive usage distributions: H(ut+1

w )−H(ut
w).

An increase in entropy typically but not necessarily corresponds to the generalisation of a word’s
meaning, while a decrease in entropy typically indicates a specialisation process. Figure 4.2a shows how
the word scene has been used in an increasingly narrow array of contexts, causing usage A to become
vastly preponderant in the 1990s. As expected, to this specialisation corresponds a markedly negative
entropy difference (Figure 4.2b). This does not directly correspond to sense acquisition and sense loss,
intended as the emergence or disappearance of discrete categories, but rather it indicates a change in
the prominence of coexisting usage types, corresponding to the broadening or narrowing of the range of
effectively undertaken word interpretations. Broadening and narrowing can be also measured without
relying on an aggregation of the word usages, i.e. by simply tracking changes in the variance of the
contextualised representations. In practice, this measure of contextual variability has resulted in less
precise measurements. When we want to use entropy as a proxy for the degree of semantic change, i.e.
regardless of whether it involves generalisation or specialisation, we compute the absolute difference
instead: |H(ut+1

w )−H(ut
w)|.

As we have mentioned above, however, a difference in entropy does not necessarily correspond to
semantic change. Figure 4.2c shows e.g. how usage A is gradually overtaking usage B in the usage
distributions of the word curious. The difference in entropy between the first two intervals is approxi-
mately 0.08, then it decreases slightly for the successive pair of decades: indeed, the first three decades
show similar usage distributions. Between 1980 and 1990, i.e. when one usage overtakes the other, the
entropy of the usage distributions remains virtually constant, as it can be observed from the drop in en-
tropy difference in Figure 4.2d. This happens as entropy simply measures uncertainty of interpretation,
regardless of the ranking of specific usage types.

To take into account not just variations in the size of usage clusters but also which clusters have grown
or shrunk, we can use measures of similarity between probability distributions. The Kullback-Leibler
divergence is often used as a similarity metric but it comes with two disadvantages: it is asymmetric and
it requires absolute continuity of the two probability distributions, i.e. the KL divergence is undefined
whenever ut

w[j] = 0 and ut′
w[j] 6= 0. This last property is problematic as it often happens that a usage

cluster which is absent in t then appears in t′—such as in the case of the birth of a new usage type. On
the other hand, asymmetry is an issue as it is unclear in which direction the KL divergence ought to
be measured. To overcome both issues Lin (1991) introduced a variant of the KL divergence, typically
referred to as the Jensen-Shannon divergence (JSD):
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The JSD is symmetric, which allows comparisons between distributions that are not immediately adjacent
and makes it irrelevant to establish a direction for the comparison. Even more importantly, the Jensen-
Shannon divergence does not require absolute continuity of the two usage distributions—this is crucial
to be able to detect the birth and the death of a word sense. Furthermore, JSD can be extended to include
n probability distributions (Ré and Azad, 2014):
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Figure 4.2: Usage cluster distributions obtained with K-Means clustering of contextualised representations of
word occurrences from the Corpus of Historical American English (left) and the corresponding quantification of
semantic change (right).

In general, very different usage distributions yield high JSD whereas low JSD values indicate that the
proportions of usage types are virtually equal across periods; when JSD = 0 no shift has occurred.
Figure 4.2d shows that, unlike entropy difference, JSD increases between 1980 and 1990 as it is sensitive
to changes in the relative predominance of usage types.

Yet another way to quantify change across time periods is to simply measure the average geometric
distance between usage representations collected in consecutive periods:

1

N t ·N t′

∑
xi∈Ut

w, xj∈Ut′
w

d(xi,xj)

We experiment with different distance metrics d: Euclidean and cosine distance, as they are mostly used
in related work, as well as Canberra distance, a normalised version of Manhattan distance that relies
on dimension-wise differences between word vectors and accounts for discrepancies in absolute values
across dimensions:

d(p,q) =
n∑

i=1

|pi − qi|
|pi|+ |qi|

Intuitively, if every dimension of a contextualised word representation stands for some abstract syntactic
or semantic property (or for an unknown aggregation of such properties), one should be able to tell
two word uses apart by measuring normalised differences across all such linguistically meaningful (yet
hardly interpretable) dimensions. Indeed, Figure 4.2d shows how the average Canberra distance increases
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almost imperceptibly between the 1970s and the 1980s and it rises above 0.3 when the predominant usage
type has shifted from B to A. Average distance is a stricter metric than the previous two in the sense that
a distance value of zero indicates that the word form has been used in exactly the same contexts across
time periods. However, as it is an aggregate metric, it can sometimes be less precise: Figure 4.2b shows
e.g. how variation in average Canberra distance across intervals may not correspond in magnitude to the
shift depicted by our usage distributions in Figure 4.2a.
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Chapter 5

Evaluation

In this chapter we evaluate the contextualised word representations obtained with BERT as well as our
metrics of semantic change. First, we test how the quality of BERT’s usage representations varies ac-
cording to the degree and type of fine-tuning undergone by the language model. Then, we assess the
correlation of our measurements of semantic shift with human judgements. For all our experiments,
we rely on Hugging Face’s implementation of Google’s BERT model and choose BERTBASE as a model
variant.1

5.1 Fine-tuning

To begin, we present preliminary experiments conducted to understand whether fine-tuning is beneficial
to the pre-trained BERT language model. We experiment both with an historical corpus, COHA, and with
two conversational data sets, Reddit 2013 and r/LiverpoolFC. The three corpora, as discussed in Chapter
3, present different characteristics. COHA’s large size and the heterogeneity of its sources make it rep-
resentative of general language use. Reddit 2013 is also an heterogeneous dataset but its conversational
nature makes it different from BERT’s pre-training domain (BooksCorpus and Wikipedia). Lastly, the
main characteristics of r/LiverpoolFC is its homogeneity, which makes it representative of the language
use of the specific online community that generated it.

Figure 5.1: T-SNE visualisation of the contextualised representations collected in the r/LiverpoolFC corpus for
the word spicy with the frozen BERT language model (left) and with diachronically fine-tuned language models
(right).

1Hugging Face’s repository (https://github.com/huggingface/pytorch-pre-trained-BERT) contains
PyTorch reimplementations of many state-of-the-art language models, including BERT, which have been tested and shown to
match the performances of the original model implementations. Pre-trained models and fine-tuning examples are also available.
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Target Making dumb back tracking runs maybe, but Balo doesn’t run the channels at all, making him pretty useless for us in our system.

Frozen

Mane is up there with the pressing, energy and back tracking.
Ibe also got ravaged by Can when he picked up that yellow tracking back for the errant pass.
The real tracking starts now boys! Before was just a warmup. Now I have all my knowledge on private business jets and can put it to use.
The flight tracking thread will forever be my favourite thread of all time, across every subreddit. Truly hysterical

Fine-tuned

Mane is up there with the pressing, energy and back tracking.
So much back tracking haha
Firstly, Klopp loves hard working, back tracking and fast wingers.
Every movement was stalled once we hit midfield. Just no inventiveness, even Firmino looked poor aside from his back tracking.

Table 5.1: A target usage of the word tracking and its nearest neighbouring usages, represented by their sentential
contexts. Nearest neighbours are determined using cosine distance between representations output by the frozen
and the diachronically fine-tuned BERT.

5.1.1 Domain-adaptive fine-tuning
We fine-tune the BERTBASE language model for n ∈ {1, 2, 3} training epochs and with a learning rate
η ∈ {0.00003, 0.00001, 0.000003, 0.000001}. To test whether domain adaptation to a new target do-
main is beneficial, we train BERT on the Reddit 2013 conversational data set and measure perplexity on
the r/Liverpool dataset. We expect the domain-adapted model to obtain a better perplexity score as it
should learn the peculiarities of language use in Reddit conversations. Results show, however, that the
frozen BERT outperforms the domain-adapted one across all assessed hyperparameter configurations.
This is unexpected (Han and Eisenstein, 2019) but justifiable by the fact that training large Transformer
models comes with many difficulties (Devlin et al., 2019; Phang et al., 2018) and it lacks attested pro-
cedures (cfr. Section 4.1.3). It is not clear if all layers should be fine-tuned, whether they should be
fine-tuned simultaneously or gradually unfrozen, and what the optimal training hyperparameters are.

5.1.2 Diachronic fine-tuning
Next, we fine-tune BERT diachronically using the r/Liverpool corpus, and experiment with a temporal
granularity of 3 months, 6 months, and 1 year. The model corresponding to the first interval is ini-
tialised with domain-adapted weights obtained training the language model on Reddit 2013. To evaluate
the obtained community- and time-specific language models we follow a qualitative approach: first, we
choose a selection of words of interest, those distributed and annotated by Del Tredici et al. (2019), then
we collect contextualised representations for all usages of the target words, and finally we reduce their
dimensionality using Principal Component Analysis (PCA) as well as t-distributed Stochastic Neigh-
bour Embedding (t-SNE). The peculiarity of the usage collection step is that, for each time bin, word
representations are obtained with the corresponding time-specific (diachronically fine-tuned) language
model.

Although the quality of BERT as a language modeller decreases after domain-adaptation (Section
5.1.1), its quality as a contextualiser seems to increase as a result of diachronic fine-tuning. Indeed, as
illustrated in Figures 5.1 and 5.2, the representations of the fine-tuned models exhibit a better separation
of different usage types. While this result may appear contradictory (as diachronic fine-tuning follows
domain-adaptation), it may be the case that both fine-tuning regimes are too aggressive, thereby produc-
ing overfitting effects. On the one hand, overfitting would explain the unsatisfactory perplexity scores of
the domain-adapted model, on the other hand, i.e. in the case of diachronic fine-tuning, overfitting can
prove beneficial for word sense disambiguation of lexemes with community-specific interpretations (as
can be observed in Table 5.1).

All in all, neither fine-tuning procedure seems to produce truly generalisable weights. A possible cause
of overfitting may be the large difference in size between BERT’s original training corpora (consisting
of 3,3 billion words) and the ones deployed in our experiments (all r/LiverpoolFC conversations amount
to 40 million words).

5.2 Correlation with human judgements

After this preliminary analysis of the usage representations produced by the frozen BERT as well as
its domain-adapted and diachronically fine-tuned counterparts, we turn to an evaluation of our semantic
change detection metrics. A quantitative assessment can be performed using lists of words annotated
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Corpus Pearson’s r Spearman’s ρ
Gulordava & Baroni (2011) Google Books 0.386 n.a.
Frermann & Lapata (2016) DATE n.a. 0.377
Skip-gram distance COHA 0.047 0.119
Entropy difference COHA 0.217 0.264
Mean distance COHA 0.224 0.293
Jensen Shannon distance COHA 0.231 0.224

Table 5.2: Correlation between novelty rankings and human ratings. All correlations are statistically significant
(p < 0.03) except those obtained for Skip-gram distance.

with a semantic shift index which indicates, for each word, the degree of undergone semantic change
according to human annotators. For this analysis, we use the COHA and r/Liverpool datasets in com-
bination with the annotated word lists made available by Gulordava and Baroni (2011) and Del Tredici
et al. (2019) described in Section 3.2.

We collect representations for all occurrences of the words of interest using BERT, obtain epoch-wise
usage distributions, and then quantify semantic change by relying on the metrics presented in Section
4.4. We experiment with a single frozen BERT model and with diachronically fine-tuned BERT models,
as well as with both K-Means and Gaussian mixture models. Only the best results are reported, i.e.
those obtained with frozen BERT, K-Means, and silhouette score. Notably, both AIC and BIC proved
unreliable for Gaussian mixture models, yielding either the minimum or the maximum number of clusters
for virtually every word. As a baseline, we use the cosine distance between type representations obtained
for the same word by two incrementally trained Skip-gram models (following the procedure introduced
by Kim et al. (2014)). The first Skip-gram model (Mikolov et al., 2013a) is trained on COHA texts from
the 1960s and then used to initialise the second Skip-gram model.2

Table 5.2 shows the correlation values obtained with our methods together with the scores obtained by
previous approaches on the same annotated data set. It should be noted that the correlation values are not
directly comparable as the reference models have been trained on different corpora. In particular, Google
Books is a much larger collection of texts than COHA or DATE (Frermann and Lapata, 2016); DATE
instead is an expanded version of COHA that includes ca. 5 million more words. We use two correlation
measures to enable said comparisons, though Spearman’s ρ seems to be a better choice given the way the
list of words was annotated: whereas Pearson correlation tests for linear relationship between continuous
variables, and therefore expects proportionality in the change of novelty and shift scores, Spearman’s
rank-correlation coefficient tests for monotonic relationships and hence does not expect the two variables
to change at a constant rate. This seems to better match the annotation procedure, where judges were
asked to assign to each word an index on a 4-point scale (Gulordava and Baroni, 2011). The resulting
scores are an aggregation over human annotators hence small decimal differences between scores should
not be deemed as particularly meaningful.

The average geometric distance between representations of usages made in contiguous intervals, the
difference in entropy and the Jensen-Shannon distance between adjacent usage distributions obtain sim-
ilar correlation scores, yet lower than those obtained by the competing approaches (cfr. Section 6). We
have also experimented with time series that include usage distributions from the intervening decades,
the 70s and the 80s, by measuring the correlation of the shift index with the mean and variance of the
4-decade time series (and with the multi-distribution JSD). This has resulted in a decrease in correlation.
Finally, we have repeated this qualitative evaluation using a BERT language model that is first domain-
adapted to Reddit 2013 and then diachronically fine-tuned on r/LiverpoolFC. The correlation between
the output of this model and the semantic shift indices made available by Del Tredici et al. (2019) are not
significant, indicating that data sparsity can prove problematic for our procedure.

2The Skip-gram models are trained using the gensim library: radimrehurek.com/gensim/models/word2vec.
html. The vector dimensionality is 300, the window size is 5, and the minimum number of occurrences for a word to enter
the vocabulary is 5. The model is trained using negative sampling (with 5 samples) as well as downsampling of high-frequency
words. All the hyperparameters whose values we have not unspecified are set to gensim’s default values.
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Figure 5.2: T-SNE visualisation of the contextualised representations collected in the r/LiverpoolFC corpus for
the word spicy with the frozen BERT language model (above) and with diachronically fine-tuned language models
(below). Observations are represented by the sentential context that generated them.
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Chapter 6

Analysis

In this chapter we showcase the types of analysis empowered by our method, discuss their usefulness,
and scrutinise their mistakes and limitations. Indeed, we believe that the main advantage of our approach
is its versatility: a single type of word representation and a single representation learning algorithm
can be used to investigate a variety of lexical phenomena. We also discuss potential reasons for a not
entirely satisfactory correlation of our shift metrics with annotated semantic shifts, propose a qualitative
analysis of usage cluster formation, and elaborate on whether our method is applicable to semantic
change happening at any temporal granularity.

The previous chapter presented a quantitative evaluation of our metrics of lexical semantic change.
As a (not entirely fair) comparison, we have used distance of collocation-based word representations
(Gulordava and Baroni, 2011) as well as the SCAN model (Frermann and Lapata, 2016). The lower
correlation scores achieved by our method may result (i) from the quality of the representations, (ii) from
an inaccurate aggregation of word usages, or (iii) from the unripeness of our metrics, though we observe
that self-distance of Skip-gram vectors (Kim et al., 2014) obtained from our own training data does not
yield significant correlation.

With regard to (i), we notice that almost all usage matrices Uw exhibit a high degree of variance, and
that trying to reduce the dimensionality of the usage matrices immediately results in a drop of the amount
of variance explained by the maintained dimensions. The fact that usage vectors are rather dissimilar to
each other suggests that BERT representations are highly sensitive to contextual variations. Although
context-sensitivity is clearly a positive characteristic of word features (cfr. Section 2.2.2), excessively
high sensitivity may make it more difficult to obtain meaningful aggregations of usages. In other words,
the interpretation obtained e.g. for the word free in sentence (1-a) should not differ much from the
interpretation obtained from sentence (1-b), where a single distant word has changed, or from sentence
(1-c), where multiple tokens have changed—even one that is adjacent to free. The meaning in context of
free is the same for all example sentences.

(1) a. He was not tased because of his viewpoint or to restrict his free speech; it was because he
would not yield the floor to other students.

b. He was not tased because of his viewpoint or to restrict his free speech; it was because he
would not yield the floor to other employees.

c. She was not tased because of her viewpoint or to restrict her free speech; it was because
she would not yield the floor to other students.

To define the meaning of a target word, distributional word representation models take into account,
with uniform importance, a fixed number of surrounding tokens. The above examples1 show, however,
that drawing a boundary for context-sensitivity is not a straightforward endeavour, and that it is preferable
to let the representation learning algorithm set such limit automatically, dynamically, and gradually, as
BERT does. So high sensitivity is necessary and only constitutes an issue if the model’s attention is

1Sentence (1-a) is taken from COHA, document news 2007 641837.txt whereas sentences (1-b) and (1-c) are con-
structed by the author.
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drawn by irrelevant cues. Fortunately, the latter does not seem to be the case as very recent studies show
that while single BERT attention heads do not address multiple linguistic relations, specific heads learn
to find direct objects of verbs, determiners of nouns, objects of prepositions, and objects of possessive
pronouns with at least 75% accuracy (Clark et al., 2019).

Given the rather high quality of BERT’s contextualised word representations, the weak results of our
quantitative assessment may be caused by an inaccurate aggregation of word usages (ii). The next section
of this chapter discusses this possibility at length and concludes that most usage aggregations obtained
with our method are interpretable and meaningful yet that some of them may not correspond to those a
human reader would produce.

Finally, concerning (iii), we interpret the fact that the three proposed metrics achieve similar corre-
lation scores as an indication that they offer complementary accounts of transformations in usage dis-
tributions. A change in entropy between temporally contiguous usage distributions indicates a process
of narrowing or widening of the possible interpretations that a word form may undertake. However,
a lexical semantic change is often accompanied by yet does imply such a change in uncertainty of in-
terpretation (cfr. Section 4.4). On the other hand, although the Jensen-Shannon distance between two
distributions should be a more direct measure of actual change in the referential scope of a term, it also
yields positive values when small oscillations occur in the relative predominance of a word usage type
(Figures 6.1a and 6.1b), which should not be necessarily deemed as a sign of shift. Lastly, although it
does not rely on usage distributions, the average geometric distance between temporally adjacent usage
matrices is also the result of an aggregation, namely of computing the mean of all pairwise distances. A
possible solution to this problem may have come from computing distances only between time-specific
cluster centroids, but additional experiments have shown that this is not the case.
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Figure 6.1: Usage cluster distributions obtained with K-Means clustering of contextualised representations of
word occurrences from the Corpus of Historical American English (left) and the corresponding quantification of
semantic change (right) for the word virus.

6.1 Cluster formation

The state-of-the-art results obtained by BERT on many token-level language tasks are an indicator of
the good quality of BERT’s contextualised word representations. Indeed, as explained in Sections 2.2
and 2.3, we extract word features from the BERT language model as we expect them to encode those
collostructural word properties that are intrinsically ignored by standard distributional approaches. To
establish if BERT’s dynamic interpretations of word usages are indeed more discriminative and thus
more informative than static type-based representations, we analyse the linguistic properties encoded by
the model. We do so by investigating which properties are shared by usages that are clustered into the
same partition.

As a point of departure, we observe that the contextualised representations obtained for polysemous
words tend to cluster according to the respective underlying senses of those words. As an example, the
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vectors collected for the word curious are grouped together depending on whether curious is used to
describe something that excites attention as odd, novel, or unexpected, or rather to describe someone
who is marked by a desire to investigate and learn. As shown in Figure 6.2a, both usages are present
across the two centuries under scrutiny: the cluster of usages A is formed by occurrences such as: full
of questions, intensely curious and entirely non threatening or staring at him, half fearful, half curious,
whereas cluster B consists of usages such as the most curious reading or curious sense of gratitude.
Similarly, occurrences of the word users are discriminated according to whether they refer to users of
digital products and services (usages B and E: computer users, users of both Yahoo and AOL), users of
resources (usage D: users of hydro-electric energy), users of non-digital products (usage F: car users),
drug users (usage C: dealers and users; many users quit on their own; pill users), or very specifically to
the Suez Canal Users’ Association, which is granted its own cluster (usage A: the users’ association).

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

0

0.2

0.4

0.6

0.8

1 usage A
usage B

curious

(a)

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

0

0.2

0.4

0.6

0.8

1 usage A
usage B
usage C

sleep

(b)

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

0

0.2

0.4

0.6

0.8

1 usage A
usage B
usage C

refuse

(c)

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

0

0.2

0.4

0.6

0.8

1 usage A
usage B

brick

(d)

Figure 6.2: Usage cluster distributions obtained with K-Means clustering of contextualised representations of
words from the Corpus of Historical American English. Specific usage types of each word are described in Section
6.1.

Contextualised representations also seem to discriminate literal from metaphorical usages. Usage
vectors for ceiling form two clusters: one corresponds to references to ceilings as the upper interior
surface of rooms such as the ceiling of a church or those who prefer the open sky to a ceiling, while the
other cluster corresponds the word’s metaphorical sense of upper limit, usually related to money (ceiling
prices; a tax-ceiling amendment), even when the surrounding sentence involves cues to the literal sense,
as in to keep from breaking through the ceiling the treasury has already suspended the sale of its savings
notes. The same is true for sphere, which is interpreted either as a round solid figure (to make the perfect
sphere; at every point of this sphere it tends toward the centre of it; the whooshing sphere) or as an
area of knowledge, activity, interest, etc. (the sphere of immaterial goods; many subjects fall within its
sphere; it is the United States to enlarge the sphere of its action).
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As expected, contextualised word representations do not only encode semantic relatedness or similar-
ity, they also enable differentiation based on a word’s syntactic functionality. Part-of-speech ambiguity,
for example, appears to be at least partially solved by the language model. Occurrences of cost are par-
titioned according to whether the word is used as a noun (A: the cost of the materials) or as a verb (B:
how much they will cost), and regardless of the part of speech of the surrounding words: cluster A also
includes a further cost-price squeeze and a major cost component of aluminum while cluster B contains
usages such as will [...] cost 5 less per bottle or they cost even more. The same holds e.g. for excuse:
one cluster contains the word’s verbal use such as in I will not excuse you or having to excuse herself,
whereas the other partition corresponds to the nominal use, as in this excuse is not good or his want of
knowledge was no excuse.

Furthermore, and perhaps less expectedly, BERT pays attention to the presence and type of syntactic
arguments that usually co-occur with a lexical item. E.g. usages of the word refuse are clustered together
according to what seem to be its subcategorisation frames (Figure 6.2c): partition A contains occurrences
of refuse used either as an intransitive verb or as a transitive verb followed by a direct object (refuse,
and you die; he would not refuse a draft), cluster B contains mostly nouns (the refuse of the schools),
and cluster C contains verbs with infinitive complementation (refuse to hire). Interestingly—and a sign
that BERT is able to cope with distant dependencies—intervening tokens do not seem to distract the
language model: the usage in can railroad corporations refuse or neglect to perform their public duties
upon a controversy belongs to cluster C even though refuse and its syntactic argument to perform are not
linearly adjacent. Other examples of same-POS occurrences that are discriminated by our model include
verbs and nouns used as modifiers. The word family is recognised either as a noun (family and friends)
or as a nominal modifier (family members), and dining is interpreted either as a verb (dining at tables;
immediately after dining), or as a verbal modifier (dining facilities, dining and living rooms). In fact,
dining’s verb partition also includes substantivised verbs (extravagant wining and dining), suggesting
that the features onto which our model latches may not always be predictable (i.e. why are substantivised
forms not assigned to a separate partition?). Singling out modifiers of noun phrases, however, seems to
be a recurring strategy of our model. We see this behaviour also for the word sleep (Figure 6.2b), whose
usages are partitioned into nouns (usage B: a good night’s sleep), verbs (usage C: you’ll feel and sleep
better), and modifiers (usage A: sleep habits; sleep-wake cycle).

Specific partitions are also assigned to lexical items that are used to refer to entities, so that mirror
can be a polished surface that forms images by reflection (a sink and a mirror) as well as the name of
a news outlet (bought by The Times Mirror Co.; the tabloid Mirror; the Los Angeles Mirror2). This
is the only differentiation the model applies to mirror: metaphorical nominal usages as well as verbal
usages are included in the first cluster. The latter example hints again at the partial unpredictability of our
model when it comes to choosing the lexical and contextual properties that define usage clusters. A more
surprising instance is the word doubt, for which we do not observe the expected noun-verb distinction
but rather a distinction between usages in affirmative contexts (there is still doubt; the benefit of the
doubt), in negative contexts (there is not a bit of doubt; beyond a reasonable doubt), and usages that
are modified by one or more morphemes (doubtless; doubtingly). Why are such usages even counted as
occurrences of the word doubt? The reason is that BERT’s tokeniser splits actually occurring tokens into
Wordpiece tokens (Section 4.1.1), so that the model reads doubtless as doubt ##less. This peculiarity of
BERT sometimes causes the emergence of unexpected clusters of proper names or of mixed referents,
mostly in the case of virtually unambiguous words such as lips (e.g. John Lipsky / john lips ##ky), brick
(e.g. Marshall Brickman / marshall brick ##man), and card (cardiorespiratory / card ##ior ##es ##pi
##rator ##y, cardamom / card ##amo ##m). As can be observed in Figure 6.2d, this is not always a
neglectable issue.

Another consideration is to be made with regard to the clustering algorithm that produces the types
of usage differentiation described in this section. As K-Means and its K selection criteria allow for a
minimum of two clusters (cfr. Section 4.2.3), our model is sometimes forced to build multiple partitions
for unambiguous words, according to hardly interpretable features. This happens e.g. for the words

2Capitalisation is used here only to improve readability. All words are seen by our model in lower case.
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maybe, woman, and women. Finally, we notice that the cluster distributions obtained in the first decades
(typically until 1870) are in general less reliable than those obtained for later intervals. This seems to be
due to the limited amount of word occurrences found in those periods, which is directly related to the
overall smaller size of the text collections available for earlier periods (cfr. Section 3.1.1). Indeed, words
that occur rarely across all decades (roughly, less than 300 times in total) exhibit less interpretable usage
distributions.
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Figure 6.3: Usage type distributions and frequency distributions obtained with K-Means clustering of contextu-
alised representations of the word users, as it occurs in the Corpus of Historical American English. Specific usage
types of each word are described in Sections 6.1 and 6.2.

6.2 Lexical change modelling

The usage distributions we obtain by clustering contextualised word representations give us a way to
pinpoint the exact interval where a certain word usage has first appeared, its last interval of occurrence,
as well as the overall diachronic stability of a cluster. In particular, we declare the death of a usage cluster
in interval t′, when the probability of the corresponding usage type is 0 in all intervals t ≥ t′. Similarly,
the birth of a cluster happens at time t′ when the corresponding cluster is empty for all intervals t < t′.
The stability of a cluster is measured as the proportion of intervals wherein the corresponding usage type
has occurred. These measures will help us describe the trajectories of the set of words under scrutiny.

As an example, if we look at the usage distributions of the word form users (Figure 6.3a), we notice,
first, that the word never occurs before 1900. Then, our visualisation shows that the initial occurrences
of users refer exclusively to users of resources and products (usages D and F); these two usage types are
the most stable across decades, with stability values of ca. 82% and 91% respectively. We can further
observe the birth of four usage types: people making use of narcotics have been called users starting
from the 1930s (usage C: Pot prohibition gives sporadic users the stigma of criminal records and makes
young people cynical), users of digital products and services (usages B and E) have been designated by
this word since the 1980s. The fourth birth, in the 1950s, corresponds to occurrences of users that refer
to the Suez Canal Users’ Association (usage A); this usage dies in the 1960s and its stability can be
quantified as ca. 18%. The careful reader will have noticed that the birth of cluster E is actually located
in the 1960s. We have stated otherwise as there exist only a single usage of type E in the 1960s, which we
consider to be assigned to the incorrect partition (cfr. Table 4.1). How can we facilitate such diagnoses?

Recall that our epoch-specific probability distributions result from normalising frequency distributions
(Equation 4.1). By dropping the normalisation, we can combine information about the relative and
absolute frequency of co-occurring usage types as well as the overall frequency of the word form. Figure
6.3b shows e.g. that cluster E is of negligible size in the 1960s, that users of resources are mentioned less
frequently starting from the 1950s and slightly more often in the last two decades (perhaps as a result of
increased attention towards excessive use of natural resources), that deployment of users in the context
of digital products and services is scarce in the 1980s, it increases to ca. 50% of all usages in the 1990s,
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and it explodes in the 2000s, when it is not only responsible for 80% of occurrences but also for a very
large growth in the overall frequency of the word form—with this new set of referents, the word users
has become much more widespread.

Such results show that, as expected, our method is able to detect polysemisation processes. In partic-
ular, it is able to recognise the broadening trajectory of a word’s interpretation that is driven by specific
events, technological innovations, and cultural transitions. An example of event-driven broadening can
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Figure 6.4: Usage type distributions obtained with K-Means clustering of contextualised representations of words
occurring in the Corpus of Historical American English. Specific usage types of each word are described in Section
6.2.

be again observed in Figure 6.3b, where usage A corresponds to a very specific usage of the word users
within the named entity Suez Canal Users’ Association. The corresponding cluster survives for two
decades and is mostly prominent in the 1950s, exactly when the Suez Crisis (or Second Arab-Israeli
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War) took place. The word curtain too acquires a metaphorical meaning within the locution iron cur-
tain. Unsurprisingly3, the corresponding usage cluster B pressingly emerges in the 1940s, it takes up
to 62% of the word usages in the 1950s and it appears for the last time at the end of the cold war, in
the 1990s (Figure 6.4c). Another war-related example is the word atom, whose usage in phrases such as
atom attack, atom bombs (cluster B) appears in the 1930s, grows both in relative and absolute frequency
in the decades around World War II, and then decreases again, with a trailing drop in overall frequency
(Figure 6.4a).

Many detected semantic shifts, on the other hand, are driven by technological innovations. Examples
of these shifts are the words virtual, lift, and energy. The word virtual occurs intermittently from the
1840s, and for a century it only designates the property of being something in effect though not formally
recognised; in Figure 6.4b this corresponds to cluster B, including usages such as virtual dictator or
virtual monopoly. Starting from the 1950s, the word virtual begins to be used in different types of
contexts (e.g. virtual particles) until, in the 1990s and 2000s, it acquires the meaning of something that
does not physically exist but appears to do so thanks to e.g. a computer software; this is usage A: virtual
private networks; virtual guitar, keyboards or drums; a virtual walk. Similarly Figure 6.4e shows how, in
concomitance with the availability of automated lifts, at the beginning of the twentieth century the word
lift starts referring to platforms or compartments for raising and lowering people or things to different
levels. Usages of the word energy are clustered by our method into two partitions, as illustrated by Figure
6.4d. One corresponds to the sense of strength and vitality as well as its metaphorical extension to the
domain of physics as a property of matter and radiation (usage A: a drop in energy in the afternoon;
the amount of matter and energy in the universe) and it remains predominant until the 1930s; the other
contains interpretations of energy as usable power derived from physical or chemical resources such as
heat or electricity (industrial energy consumption; the atomic energy commission) and it never represents
less than 25% of the word occurrences starting from 1940.

Cultural transitions too can cause words to appear in new contexts. Our model detects e.g. the
metaphorical extension of the word mobility to the domain of society (social mobility; upward and down-
ward mobility; middle-class mobility) or the gradual shift of coach, shown in Figure 6.4f, from referring
to vehicles (usage A: a two-door coach; coach round trips; the fairy godmother changes a pumpkin into
a coach) to designating trainers (usage B: a teacher or coach, basketball coach).

In sum, our model is able to detect semantic broadening, narrowing, as well as metaphorisation. We
in fact maintain that it can also identify metonymy as metonymical usages typically show very different
collostructural properties compared to their literal counterparts. Furthermore, pleasantly in line with
linguistic theories of change (Section 2.1), our approach models semantic change as a gradual process
of polysemisation: a shift from a word sense A to a new sense B never occurs directly but rather through
intermediate polysemous stages (see e.g. Figure 6.4f).

6.3 Temporal granularity

We also experiment with representations obtained using a corpus of finer temporal granularity in order
to establish whether our method is sensitive to semantic change that happens at a faster pace. We use
COCA, which ensures that our method has a sufficient amount of observations for each year—virtually
the same amount of texts available for each decade of the COHA dataset (cfr. Section 3.1.1). Excluding
this possible confounding factor, what we evaluate is the model’s ability to distinguish among a generally
less diverse variety of usages (as they are produced in a shorter time span) and thus to detect more subtle
changes in the usage of a word. As, to the best of our knowledge, there exists no annotated list of words
changing meaning in the last three decades, we collect words which have been used by Davies (2010) as
examples for the semantic shift analysis empowered by the Corpus of Contemporary American, and we
include a few hand-picked words from the evaluation set provided by Gulordava and Baroni (2011).

First, we examine the cluster formation rules followed by our method and we note that it is able

3On 5 March 1946, at Westminster College in Fulton, Missouri, Winston Churchill’s used the term ”iron curtain” in his
so-called Sinews of Peace address: From Stettin in the Baltic to Trieste in the Adriatic an iron curtain has descended across the
Continent. Behind that line lie all the capitals of the ancient states of Central and Eastern Europe.
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to detect meaningful variation in usages also at this finer granularity. As it did with texts in COHA,
our method can discriminate between underlying senses of polysemous words (e.g. monitor, virtual),
between usages that fulfil a different syntactic functionality (e.g. download), as well as between literal
and metaphorical word usages. It also recognises usages that are part of named entities (e.g. Verizon
Wireless Theater, usage C in Figure 6.5b) or of phrasal collocations (e.g. global warming), and it
constructs clusters for usages of words as morphemes within larger lexical items (e.g. wirelessly). As
we observed in Section 6.1, our method does not follow generalisable rules: e.g. the nominal and verbal
uses of book are not separated. Indeed, as the number and nature of the usage types are completely
data-driven, we may not observe clusters that relate to what sometimes seem to be obvious underlying
senses or, on the contrary, we may observe unexpected clusters.

Next, we look into the different types of change modelled by our approach and find that they largely
overlap with those detected in COHA texts. This is a positive result as it indicates that the quality of our
method does not depend on the temporal granularity of the available data sets—as long as the amount
of observations is sufficiently high (cfr. Section 6.2). Among the detected cultural drifts, we can again
detect changes driven by technological innovations, important events and entities, and we observe how
frequency distributions mirror correspondingly expected increases and decreases in word use. We also
find linguistic shifts which, at this finer granularity, seem to address new communicative needs brought
about by technological and cultural innovation.

As a first example of cultural drift, Figure 6.5a shows that our method detects two usages of warm-
ing. One cluster has remained steady across the years; it is the one that includes adjectival and verbal
occurrences of the word, describing the property or the act of causing an increase in the temperature of
something (usage B: my guy and I decided to try something new in bed, so I bought warming oil and gave
him a full-body massage; have tomato sauce warming in a large pan). The other cluster corresponds to
usages within the phrase global warming or related to global warming as a topic (usage A: nitrogen is
now understood to help regulate the carbon cycle and exert both cooling and warming effects on the
climate). The frequency of such usages has largely increased starting from 2000 and it has become pre-
dominant. This is an example of a pure cultural drift, one that is not determined by a specific innovation
or event.

Some cultural drifts are instead related to particular events (e.g. crisis), entities (e.g. wireless), or
technological advances—more (e.g. web, download) or less directly (reality, virtual). A dangerous
moment or a time of great confusion can be referred to as a crisis (usage B: taking command of the
crisis; sudden crisis or emergency the crisis of values). The term is also used when difficult situations
involve society at large as well as globally relevant systems and institutions (usage A: from crisis to
stagnation; it was government interference in them that caused the crisis). As shown in Figure 6.5c,
while the frequency of usage type B exhibits only small fluctuations across the years, the frequency of
usage type A increases in concomitance with famous systemic crises: the crisis of communism in 1990-
1991 and the financial crisis begun in 2008 (a debt crisis; the government’s anti-crisis plan for 2009).
Another intriguing example is reality, whose evolution is depicted in Figure 6.5f. The term, in its most
prototypical sense, refers to the state of things as they truly are (usage B: young children have trouble
distinguishing between reality and fantasy) yet an increasingly large proportion of usages (type A) refer
to tv reality, occur within the phrase virtual reality, or they are related to it (e.g. online reality game).

The linguistic shifts detected by our procedure are a case in point of how language varies according to
the communicative needs of speakers. In Figure 6.5b, we can observe e.g. how the percentage of uses of
wireless suffixed by adverbial morphemes (usage A: wirelessly) increases with respect to adjectival uses
(usages B and D; usage C corresponds to the named entity Verizon Wireless Theater). Until the 2000s,
wireless was almost exclusively used as an adjective, hence without affixation, to describe the property
of specific referents not to need wires to establish a connection (wireless device; wireless networks).
From the 2000s (and with the exception of a dubious peak in 1994), adverbialised usages have begun
to increase. We can interpret this use of morphologisation for adverb formation as the result of the
increasingly frequent need to express that any action has the quality of not needing wiring in order to
be performed: what used to be the property of particular referents has become a general category in
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Figure 6.5: Usage cluster distributions obtained with K-Means clustering of contextualised representations of
words from the Corpus of Contemporary American English. Specific usage types of each word are described in
Section 6.3.

the English vocabulary. The words routine and download are similar examples. Figure 6.5d shows
that routine has increasingly been used nominally (usage B), to designate a usual way of doing things
consisting typically of a fixed set of activities, rather than as an adjective (usage A) to describe specific
referents as ordinary and not special. Likewise, Figure 6.5e depicts how download used to be employed
as a verb to express the newly available action of transferring data from a server to a device (usage A:
e.g. download updates). In the twenty-first century, is being used as a noun too, becoming something
countable and qualifiable (usage B: e.g. free download).

These small case studies exemplify how new semantic affordances carried by innovation become lex-
ified as soon as the language community shares a recurring need to verbalise them. As we hoped, trying
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to understand the processes that lead to linguistic change provides us with more general insights into
how language is used to create socially recognised meaning.
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Chapter 7

Conclusions

The meaning of words is in constant change. If, in the past, linguists had to read through thousands of
books in order to detect lexical semantic change, nowadays we can rely on automated distant reading
of digitised books as well as on increasingly large collections of published texts, scripts, and everyday
language. The distant reading programme is motivated by a will to go beyond the thousands of words that
a single individual is able to read, and take off to observe the language production of entire communities
from above—a bird’s-eye view free from the subjective biases involved in close-reading interpretation.
To do so, language scientists have been making an effort to develop computational techniques for the
automatic analysis of raw language data: they have begun by counting word collocates, used the latter
to derive abstract high dimensional word representations, and then embedded words in high dimensional
semantic spaces with the use of predictive neural networks. We now propose to use language models as
a tool for representing words as functions of their collostructural properties and to use the resulting word
features for the tracking and analysis of diachronic lexical change.

Together with the evolution of computational models of semantic shift, the theoretical underpinnings
of such automated methods have evolved too. The first contribution of this thesis is therefore a review
of different word representation models and of their application to lexical semantic change modelling.
Starting from type-based representations, we have discussed the disadvantages of modelling the meaning
of a word using static features which are applicable to all occurrences of that word. Our review has then
moved from sense-agnostic word features to the sense-aware modelling of word types as the mixture of
multiple concurring underlying senses (Tahmasebi et al., 2018). These approaches account for polysemy
by discretising a large variety of word usages into a fixed number of senses, and they come with three
main downsides. First, they require arbitrary assumptions concerning the expected degree of polysemy
of a word (how many senses does w possess? How many of those will be observed in a given dataset?).
Second, they produce context-independent word features and third, they do so by largely ignoring the
meaning carried by grammatical and rhetorical structures. To address these limitations we have proposed
using neural language models to produce usage representations, i.e. contextualised word representations
that define every single word usage as a function of its context of occurrence.

The second, larger contribution of this thesis is a method for the aggregation of said contextualised
representations into meaningful clusters of word usages. We demonstrate the interpretability of the ap-
proximate rules which guide cluster formation and rely on the resulting partitions to obtain time series
of usage type distributions. The cluster formation procedure is entirely data-driven, with the goal of ex-
cluding subjective biases from the modelling process, and the resulting usage type distributions are char-
acterised by actual word usages from the corpus thus particularly apt for qualitative analyses of semantic
shift. Nevertheless, to quantify over these distributions and over collections of contextualised word repre-
sentations, we propose three metrics of semantic change and evaluate them against two human-annotated
data sets. Although our measures exhibit a weaker correlation with human judgements than previous at-
tempts (Gulordava and Baroni, 2011; Frermann and Lapata, 2016), qualitative analyses demonstrate that
our method is able to detect narrowing and broadening trajectories as well as metaphorisation and, po-
tentially, metonymisation. The identified polysemisation processes are cultural drifts—lead by specific
events, technological innovations, and cultural change—as well as linguistic shifts, such as modifications
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of the subcategorisation frames of nouns and verbs.
A further goal of this thesis is to show that language models and contextualised word representations

are versatile tools for the analysis of language change and variation in general. Indeed our approach
offers a double perspective on word meaning which is the result of combining the semasiological and
onomasiological views: we go from word form to function in that our unit of analysis are lexical items,
and from function to form as our unit of representation are the functions fulfilled by those lexical items—
observed directly from the data.

Our work is not a comprehensive collection of the types of inquiries that contextualised word repre-
sentations allow. Yet we hope that, by demonstrating their wide applicability and ease of use, this thesis
will spark interest in developing further usage-based methods, refining current language representation
learning models, as well as using them in practice to answer linguistic and sociolinguistic questions.

Naturally, our method comes with drawbacks. For instance, if standard methods find it problematic
to reliably and accurately model low-frequency words, our approach still does not fully solve this issue.
Another limitation of our method is that it analyses the change of a possibly large but still limited amount
of lexemes. In other words, our method does not allow to simply detect changing words over the entire
vocabulary of a corpus. This would either require storing a high-dimensional contextualised word rep-
resentation for every single token appearing in the corpus, or following the more approximative strategy
described in Appendix C.

While these are the limitations of contextualised word representations for lexical semantic change
modelling, we believe that they are remarkably outweighed by the potential of such representations,
which provides inspiration for future research. Firstly, the metrics that we have defined result in time
series which have not been fully exploited in the current work. Time series analysis can reveal the exact
change point of a semantic shift (as shown e.g. by Kulkarni et al., 2015) with the precision granted by
statistic significance measurements. Moreover, it allows for the analysis of trend and seasonality of word
usages (e.g. the word tracking is used in r/LiverpoolFC in its sense of tracking a football player in order
to have him sign a contract; this usage type typically re-occurs every year during transfer seasons). Sec-
ondly, considering that token- and sentence-level representations output by pretrained language models
have proved to be good features for tasks such as sentiment analysis, we expect usage representations to
be also employable to characterise more types of semantic change, such as amelioration and pejoration.

As previously mentioned, contextualised representations are not limited to an analysis of diachronic
change but they can also be applied to synchronic studies of semantic variation: the time-stamped usage
distributions that we have presented can be easily extended to include a third dimension of variation—
e.g. genre, social status, geographical position, or political orientation. As an example, it is reasonable to
expect that usages of the word significant vary from academic texts, to books of fiction, to newspapers.
Moreover, contextualised representations allow for a fully onomasiological approach which can prove
particularly useful e.g. for synonymy detection: moving from function to form, words with overlapping
semantic affordances (Szymanski, 2017) may be identified by finding regions of the semantic space
that are occupied by usage vectors of different lexemes. This paradigm can be further extended to a
multilingual setup (Beinborn and Choenni, 2019), where multiple languages are represented in the same
semantic space. Following the lexical typology tradition, semantic maps can then e.g. be constructed
using contextualised representations as nodes and finding relations between word forms of different
languages based on the overlap of their usage representations.

The application of semantic variation and change modelling are only limited by the creativity of re-
searchers and professionals. In their review, Kutuzov et al. (2018) mention two broad categories of
possible applications: on the one hand, linguistic inquiries into the dynamics and underlying causes of
semantic shifts, and on the other, language-based event detection approaches. Social scientists may try,
in the furrow of this work, to define the underlying mechanisms of language change, i.e. to define a
set of rules that can explain and predict the emergence and disappearance, in a language community,
of new meanings given a word form, as well as of new symbolic ways of expressing already existing
semantic affordances. In addition, criminologists may compare the linguistic distribution of coded terms
with that of candidate translations to decipher the intended meaning of unlawful messages and, as coded
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language is also used in the political sphere, discourse analysts may do the same to unveil bias in the
coded language of political figures and supporters. Finally, yet more applications involve e.g. political
scientists and anthropologists, who can combine insights from the proposed analysis of semantic change
with insights from psychology and cognitive science in order to better understand cultural transitions and
the dynamic processes that shape them.
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Appendix A

BERT Preprocessing

The pre-processing procedure to generate training examples for BERT involves the following steps.

1. Sentence segmentation: each document is split into the sentences that compose it. In the case of
Reddit 2013, we consider each user post as a sentence. For non-conversational datasets, a sentence
is usually simply marked by an end-of-sentence period; in fact, any segmentation algorithm can be
used for this step.

2. Tokenisation: each sentence is split into tokens using the specific tokeniser that comes with the
pre-trained BERT model: this involves punctuation splitting as well as the segmentation of word
tokens into Wordpiece tokens

3. Sequence truncation: we set the maximum sequence length to 256 (a trade-off between modelling
power and computational overhead) and truncate sequences at random both from the front and from
the back, at random. That is, given a sequence of length 256 +m, we remove the first or last token
m times and with equal probability.

4. Sequence pair generation: as explained in Section 4.1, BERT’s LM training involves a next sentence
prediction task. So pairs are formed, with equal probability, either (i) by joining two actually con-
tiguous segments or (ii) by sampling a sentence from a random document. The segment identifiers,
for which segment embeddings are looked up, are 0 for the [CLS] token, the tokens forming the
first sequence and the first [SEP]; they are 1 for the tokens of the second sequence and for the final
[SEP] symbol.

5. Word masking: we mask Wordpiece tokens according to the default BERT probabilities (Section
4.1; Devlin et al., 2019).

6. Epoch-data generation: as the previous steps involve a significant random component, multiple
epochs of pre-processed data can be generated to avoid training BERT on the same random split for
all epochs.
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Appendix B

Measures of inter-cluster distance

To establish links between usage type partitions obtained for two adjacent periods, the following inter-
cluster distance measures can be used together with a distance metric d (e.g. Euclidean or cosine):

• centroid distance, the distance between the centroids of two clusters:

DCEN (Ci, Cj) = d(µi − µj)

• single link distance, the distance between the closest points of two clusters:

DSL (Ci, Cj) = min
xi,xj

{d(xi − xj)|xi ∈ Ci,xj ∈ Cj}

• complete link distance, the distance between the furthest points of two clusters:

DCL (Ci, Cj) = max
xi,xj

{d(xi − xj)|xi ∈ Ci,xj ∈ Cj}

• average link distance, the average pairwise distance between all possible combinations of points in
the two clusters:

DAV G (Ci, Cj) =
1

|Ci| · |Cj |
∑

xi∈Ci,
xj∈Cj

d(xi − xj)

• Ward’s distance, the difference between the total intra-cluster sum of squares for the two clusters
separately, and the intra-cluster sum of squares that results from merging the two clusters into a
single cluster Cij = Ci ∪ Cj :

DWARD (Ci, Cj) =
∑
xi∈Ci

(xi − µi)
2 +

∑
xj∈Cj

(xj − µj)
2 −

∑
xij∈Cij

(xij − µij)
2
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Appendix C

Approximate change detection

As the thesis does not describe a way of tracking the entire vocabulary for semantic change, we propose
here a simple method to do so approximately, which has not yet been thoroughly tested. For each
word type occurring in the corpus, we keep track of its average contextualised representation and of its
dimension-wise variance.

To make this process computationally feasible, we compute mean-shift usage vectors and usage-
variance vectors incrementally. The mean-shift vector for word w after observing its n-th occurrence is
given by:

µn
w = abs

(
µn
w − µn−1

w

)

mn
w =mn−1

w +
xn
w −mn−1

w

n

where abs(·) outputs a vector of element-wise absolute values. The usage-variance vector for word w
after observing its n-th occurrence is given by:

σn
w =

√
snw
n

snw = sn−1w +
(
xn
w − µn−1

w

)
(xn

w − µn
w)

Meaning generalisation and specialisation should correspond to spikes and drops in variance, whereas
reference shifts should correspond to changes in the mean usage vector.
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